1 Intro

Thm: $(\mathbb{C},+, \cdot)$ is a field.

Lemma: (Binomial formula) If $z_{1}, z_{2} \in \mathbb{C}, n \in \mathbb{N}$, then

$$
\left(z_{1}+z_{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{1}^{k} z_{2}^{n-k}
$$

Def: Distance between z_{1} and z_{2}.

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Lemma: Triangle Inequality

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

Def. Complex Conjugate of $z=x+i y$ is $\bar{z}=x-i y$
Properties:

1. $\overline{\bar{z}}=z$
2. $|\bar{z}|=|z|$
3. $\bar{z}=z \Longleftrightarrow z \in \mathbb{R}$
4. $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}, \overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}}$
5. $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}, \overline{\overline{z_{1}}} \overline{z_{2}}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$
6. $\operatorname{Re}\{z\}=\frac{1}{2}(z+\bar{z}), \operatorname{Im}\{z\}=\frac{1}{2 i}(z-\bar{z})$
7. $|z|^{2}=z \bar{z}=\bar{z} z$
8. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|,\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$

Def. $\arg z$ is the set of all $\operatorname{arguments.~} \operatorname{Arg} z$ is the principal $\operatorname{argument}$ i.e. $\operatorname{Arg} z \in(-\pi, \pi] . \arg z=$ $\{\operatorname{Arg} z+2 k \pi \mid k \in \mathbb{Z}\}$
Properties:

1. $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
2. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$

2 Complex Roots

Solutions of $z^{n}=z_{0}=r_{0} e^{i \theta_{0}}$ are $\omega_{k}=\sqrt[n]{r_{0}} e^{i \frac{\theta_{0}+2 k \pi}{n}}$ for $k=0,1, \cdots, n-1$. Principal root is ω_{0}.

3 Topology

Def. $B_{\epsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}| | z-z_{0} \mid<\epsilon\right\}$
$B_{\epsilon}^{\prime}\left(z_{0}\right)=\left\{z \in \mathbb{C}\left|0<\left|z-z_{0}\right|<\epsilon\right\}\right.$

Def. z is an interior point of a set S, if $\exists \epsilon: B_{\epsilon}(z) \subset S$
Def. z is an exterior point of a set S, if $\exists \epsilon: S \cap B_{\epsilon}(z)=\varnothing$
Def. z is a boundary point of a set S, if $\forall \epsilon: S \cap B_{\epsilon}(z) \neq \varnothing \wedge S^{c} \cap B_{\epsilon}(z) \neq \varnothing$

Def. S is open if it contains no boundary points.
Def. S is closed if it contains all boundary points.
Def. An open set $S \subseteq \mathbb{C}$ is called connected iff each pair of points in S can be joined by a polygonal line.
Def. S is a domain if S is open and connected.
Def. S is a region if S is a domain but with some boundary points.
Def. S is bounded if $\exists R>0: S \subset B_{R}(0)$.
Def. accumpulation points / limit points, z_{0} is called an accumulation point of a set $S \subseteq \mathbb{C}$ if $\forall \epsilon: B_{\epsilon}^{\prime}\left(z_{0}\right) \cap S \neq \varnothing$ (i.e. there is a convergent sequence to z_{0} whose entries are in S)

4 Limits

Def. $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ if $\forall \epsilon>0, \exists \delta>0: 0<\left|z-z_{0}\right|<\delta \Longrightarrow\left|f(z)-w_{0}\right|<\epsilon$. Alternatively, $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ if $\forall \epsilon>0, \exists \delta>0: f\left(B_{\delta}^{\prime}\left(z_{0}\right)\right) \subset B_{\epsilon}\left(w_{0}\right)$.

Thm. If $\lim _{z \rightarrow z_{0}} f(z)$ exists then it is unique.

Properties of Limit

1. $\lim _{z \rightarrow z_{0}} f(z)=w_{0} \Longleftrightarrow \lim _{z \rightarrow z_{0}} \operatorname{Re} f(z)=\operatorname{Re} w_{0} \wedge \lim _{z \rightarrow z_{0}} \operatorname{Im} f(z)=\operatorname{Im} w_{0}$
2. If $\lim _{z \rightarrow z_{0}} f(z)=w_{1}$ and $\lim _{z \rightarrow z_{0}} g(z)=w_{2}$
a) $\lim _{z \rightarrow z_{0}} a f(z)+b g(z)=a w_{1}+b w_{2}$
b) $\lim _{z \rightarrow z_{0}} f(z) g(z)=w_{1} w_{2}$
c) If $w_{2} \neq 0, \lim _{z \rightarrow z_{0}} f(z) / g(z)=w_{1} / w_{2}$
3. For a polynomial $P(\cdot), \lim _{z \rightarrow z_{0}} P(z)=P\left(z_{0}\right)$.

Def. Neighborhood of $\infty, B_{R}(\infty):=\{z \in \mathbb{C}| | z \mid>R\}$

Def. $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if $\forall R>0, \exists \delta>0: z \in B_{\delta}^{\prime}\left(z_{0}\right) \Longrightarrow f(z) \in B_{R}(\infty)$
i.e. $\forall R>0, \exists \delta>0: 0<\left|z-z_{0}\right|<\delta \Longrightarrow|f(z)|>R$

Def. $\lim _{z \rightarrow \infty} f(z)=w_{0}$ if $\forall \epsilon>0, \exists R>0: z \in B_{R}(\infty) \Longrightarrow f(z) \in B_{\epsilon}\left(w_{0}\right)$
i.e. $\forall \epsilon>0, \exists R>0:|z|>R \Longrightarrow\left|f(z)-w_{0}\right|<\epsilon$

Def. $\lim _{z \rightarrow \infty} f(z)=\infty$ if $\forall R>0, \exists r>0: z \in B_{r}(\infty) \Longrightarrow f(z) \in B_{R}(\infty)$
i.e. $\forall R>0, \exists r>0:|z|>r \Longrightarrow\left|f(z)-w_{0}\right|>R$

Thm

1. $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$
2. $\lim _{z \rightarrow \infty} f(z)=w_{0}$ if $\lim _{z \rightarrow 0} f\left(z^{-1}\right)=w_{0}$
3. $\lim _{z \rightarrow \infty} f(z)=\infty$ if $\lim _{z \rightarrow 0} \frac{1}{f\left(z^{-1}\right)}=0$

5 Continuity

Def. f is continuous (CTS) at z_{0} if (1) $f\left(z_{0}\right)$ is defined, (2) $\lim _{z \rightarrow z_{0}} f(z)$ exists, (3) $\lim _{z \rightarrow z_{0}} f(z)=$ $f\left(z_{0}\right)$. i.e. $\forall \epsilon>0, \exists \delta>0:\left|z-z_{0}\right|<\delta \Longrightarrow\left|f(z)-f\left(z_{0}\right)\right|<\epsilon$.

Thm1. $f: A \rightarrow B, g: B \rightarrow C \quad A, B, C \subset \mathbb{C}$. If f is CTS at z_{0} and g is CTS at $f\left(z_{0}\right)$, then $g \circ f: A \rightarrow C$ is CTS at z_{0}.

Thm2. If f is CTS at $z_{0}, f\left(z_{0}\right) \neq 0$, then $f \neq 0$ in a whole neighborhood of z_{0}.

Thm3. $f(z)=u(x, y)+i v(x, y), f$ is CTS at $z_{0}=x_{0}+i y_{0}$ if and only if u, v are CTS at $\left(x_{0}, y_{0}\right)$.

Thm4. If $f: R \rightarrow \mathbb{C}$ is CTS in a closed bounded region R, there exists a real number $M>0$ such that

$$
\forall z \in R:|f(z)| \leq M
$$

but with equality for at least one $z_{0} \in R$

6 Derivatives

Def. The derivative of f at z_{0} is the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

$\operatorname{Rmk}: \bar{z}, \operatorname{Re} z, \operatorname{Im} z$ are not differentiable anywhere.

1. $\frac{\mathrm{d}}{\mathrm{d} z} c=0$
2. $\frac{\mathrm{d}}{\mathrm{d} z} z=1$
3. $\frac{\mathrm{d}}{\mathrm{d} z}(c f(z))=c \frac{\mathrm{~d}}{\mathrm{~d} z} f(z)$
4. $\frac{\mathrm{d}}{\mathrm{d} z} z^{n}=n z^{n-1}$
5. $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
6. $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
7. $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$
8. When $g(z) \neq 0,\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$

Cauchy-Riemann Equations (Necessary Condition)

Thm. If $f(z)=u(x, y)+i v(x, y)$ for $z=x+i y$ is differentiable at z_{0}, then the partial derivatives of u and v exist and satisfy certain equations:

$$
u_{x}=v_{y} \quad u_{y}=-v_{x}
$$

Further, $f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x}$.

Thm. Let $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ϵ-neighborhood of $z_{0}=x_{0}+i y_{0}$ and suppose that
(a) $u_{x}, u_{y}, v_{x}, v_{y}$ exist everywhere in the neighborhood.
(a) these partials are CTS at $\left(x_{0}, y_{0}\right)$ and satisfy C-R.

Then $f^{\prime}\left(z_{0}\right)$ exists and its value is $f^{\prime}\left(z_{0}\right)=\left(u_{x}+i v_{x}\right)\left(x_{0}, y_{0}\right)$.

C-R Polar form.
Let $f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$ then if f is differentiable at z_{0} then

$$
r u_{r}=v_{\theta} \quad u_{\theta}=-r v_{r} .
$$

Thm. C-R Sufficient (Polar form).
Let $f(z)=u(r, \theta)+i v(r, \theta)$ be defined in some ϵ-neighborhood of a nonzero point $z_{0}=r_{0}, e^{i \theta_{0}}$ and suppose that
(a) $u_{r}, u_{\theta}, v_{r}, v_{\theta}$ exist everywhere in the neighborhood
(b) and CTS at $\left(r_{0}, \theta_{0}\right)$ and satisfy polar C-R (i.e. $\left.r u_{r}=v_{\theta}, u_{\theta}=-r v_{r}\right)$ at $\left(r_{0}, \theta_{0}\right)$.

Then $f^{\prime}\left(z_{0}\right)$ exists and $f^{\prime}\left(z_{0}\right)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$

7 Special Types of Functions

7.1 Analytic Functions

Def. Analytic functions a.k.a. Holomorphic functions.

1. f is analytic at a point z_{0} if it is analytic in some neighborhood of z_{0}.
2. Consider S an open set, $f: S \rightarrow \mathbb{C}$ is analytic in S, if $\forall z \in S: f^{\prime}(z)$ exists.
3. f is entire if $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic in \mathbb{C}.

Properties of analytic functions.

1. f, g analytic in S then $f+g, f g$, and $\frac{f}{g}$ if $g \neq 0$ in S are analytic.
2. $g \circ f$ chain rule holds.
3. f analytic in a domain D implies f is CTS in D and C-R Eqs are satisfied in D.
4. If $f^{\prime}(z)=0$ everywhere in a domain D, then $f(z)$ must be constant throughout D. (Proved in lecture $\mathrm{W}_{4} \mathrm{~A}$)

Def. z_{0} is called a singular point if f is not analytic at z_{0} but is analytic at some point in every neighborhood.

7.2 Harmonic Functions

Def. For $D \subseteq \mathbb{R}^{2} H: D \rightarrow R$ is harmonic if (1) H has CTS partial derivatives up to 2 nd order and satisfies Laplace's Equation,

$$
H_{x x}+H_{y y}=0
$$

Thm. If $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D, then its components u and v are harmonic.

7.3 Elementary Functions

Def. $e^{z}=e^{x}(\cos y+i \sin y)$.

Properties

1. $\left(e^{z}\right)^{\prime}=e^{z} . e^{z}$ is entire.
2. $\left|e^{z}\right|=e^{x}$. $\arg e^{z}=y+2 n \pi$ for all $n \in \mathbb{Z}$.
3. e^{z} is periodic with period $2 \pi i$.
4. $\forall z \in \mathbb{C}: e^{z} \neq 0$
5. $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}, \frac{e^{z_{1}}}{e^{z_{2}}}=e^{z_{1}-z_{2}}$
6. $e^{0}=1, \frac{1}{e^{z}}=e^{-z}$

Def. For $z=r e^{i \theta} \neq 0, \log z=\ln r+i(\theta+2 n \pi)$ for $n \in \mathbb{Z}$
$\log z=\ln r+i \operatorname{Arg} z$
$\log z=\log z+i 2 n \pi$ for $n \in \mathbb{Z}$.

Log is not CTS on $\mathbb{C} \backslash\{0\}$, accordingly Branches fix it.
Fix $\alpha \in \mathbb{R}$ restrict value of $\theta \in \arg z$ to $\alpha<\theta<\alpha+2 \pi$.
The define $\log z=\ln r+i \theta$ on $r>0, \alpha<\theta<\alpha+2 \pi$ and we have CTS and analytic on its domain.

Def. A branch of a multi-valued function f is any single-valued function F that is analytic in some domain D and for which $F(z)$ has one of the values of $f(z)$.
Def. A branch cut is a line or curve that is introduced to define a branch.
Def. Branch points are points on the branch cut that are singular points or points that are shared by all branch cuts.

Identities of \log

1. $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$
2. $\log \left(z_{1} / z_{2}\right)=\log z_{1}-\log z_{2}$
3. for $n \in \mathbb{Z}, z \neq 0 z^{n}=e^{n \log z}$
4. for $n \in \mathbb{Z} \backslash\{0\} z^{1 / n}=e^{\frac{1}{n} \log z}$

Def. Power functions:
Fix $c \in \mathbb{C}$.
$z^{c}=e^{c \log z}$ (multi-valued)
Branch cuts are teh same as logarithm.
On a branch cut of $z, \frac{\mathrm{~d}}{\mathrm{~d} z} z^{c}=c z^{c-1}$.

Def. $c^{z}=e^{z \log c}$, specify a value of $\log c$ to make the function single-valued and entire.

$$
\frac{\mathrm{d}}{\mathrm{~d} z} c^{z}=c^{z} \log c
$$

8 Trigonometric Functions

Def.

$$
\sin (z):=\frac{e^{i z}-e^{-i z}}{2 i} \quad \cos (z):=\frac{e^{i z}+e^{-i z}}{2} \quad z \in \mathbb{C}
$$

and

$$
\sinh (z):=\frac{e^{z}-e^{-z}}{2} \quad \cosh (z):=\frac{e^{z}+e^{-z}}{2} \quad z \in \mathbb{C}
$$

Properties

1. $\sin (z), \cos (z)$ are entire (usual derivatives)
2. \sin is odd, \cos is even.
3. $\sin \left(z_{1}+z_{2}\right)=\sin \left(z_{1}\right) \cos \left(z_{2}\right)+\cos \left(z_{1}\right) \sin \left(z_{2}\right)$ and $\cos \left(z_{1}+z_{2}\right)=\cos \left(z_{1}\right) \cos \left(z_{2}\right)-$ $\sin \left(z_{1}\right) \sin \left(z_{2}\right)$
4. $\sin ^{2}(z)+\cos ^{2}(z)=1$
5. $\sin z=\sin x \cosh y+i \cos x \sinh y, \cos z=\cos x \cosh y-i \sin x \sinh y$
6. $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y,|\cos z|^{2}=\cos ^{2} x+\sinh ^{2} y$

Def. A zero of $f(z)$ is a $z_{0} \in \mathbb{C}$ such that $f\left(z_{0}\right)=0$

Thm. The zeros of $\sin z$ and $\cos z$ in \mathbb{C} are the same as $\sin x$ and $\cos x$ in \mathbb{R}. i.e. $\sin z=0 \Longleftrightarrow z \in \pi \mathbb{Z}$ and $\cos z=0 \Longleftrightarrow z \in \frac{\pi}{2}+\pi \mathbb{Z}$

Properties of Hyperbolic Functions

1. $(\sinh z)^{\prime}=\cosh z,(\cosh z)^{\prime}=\sinh z$
2. $\cosh ^{2}(z)=1+\sinh ^{2}(z)$
3. $\sinh (i z)=i \sin z, \cosh (i z)=\cos z$
4. Thm: $\sinh z=0 \Longleftrightarrow z \in \pi i \mathbb{Z}$, and $\cosh z=0 \Longleftrightarrow z \in \frac{\pi}{2} i+\pi i \mathbb{Z}$

Def. A function is conformal if it preserves angles locally.
i.e.

An analytic complex-valued function is conformal at z_{0} if whenever r_{1}, r_{2} are smooth curves passing through z_{0} at $t=0$ with nonzero tangents, then the curves $f \circ r_{1}, f \circ r_{2}$ have non-zero tangents at $f\left(z_{0}\right)$ and the angle from $r_{1}^{\prime}(0)$ to $r_{2}^{\prime}(0)$ and the angle from $\left(f \circ r_{1}\right)^{\prime}(0)$ to $\left(f \circ r_{2}\right)^{\prime}(0)$ are the same.

A conformal mapping $f: D \rightarrow V$ (with D, V domains) is a bijective analytic function that is conformal at each point of D.
If such an f exists we say D and V are conformally equivalent.
Alt def:
f is conformal in D if F is analytic in D and $\forall z \in D: f^{\prime}(z) \neq 0$.

If z_{0} is a critical point of $f(z)$, there is an integer $m \geq 2$ (specifically the smallest integer $f^{(m)}\left(z_{0}\right) \neq 0$) such that the angle between two smooth curves passing through z_{0} is multiplyied by m under f.

If $f(z)$ is conformal at z_{0}, it has a local inverse there. That is $w_{0}=f\left(z_{0}\right), \exists$! function such that $z=g(w)$ is defined and analytic in a neighborhood of w_{0} denoted as N such that $g\left(w_{0}\right)=z_{0}$ and $f(g(w))=w$ for all $w \in N$.
Further $g^{\prime}(w)=\frac{1}{f^{\prime}(z)}$.

9 Integrals

Def. A path $w:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{C}$ such that $w(t)=u(t)+i v(t)$.
Def. $w^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)$ if u^{\prime} and v^{\prime} exist at t.
Properties:

- If $f: \mathbb{C} \rightarrow \mathbb{C}$ analytic, u, v differentiable at a point $t \in \mathbb{R}$, then $\frac{\mathrm{d}}{\mathrm{d} t} f(w(t))=f^{\prime}(w(t)) w^{\prime}(t)$
- Mean Value Theorem Does NOT Hold

Def. Integral of $w(t)$.

$$
\int_{a}^{b} w(t) \mathrm{d} t:=\int_{a}^{b} u(t) \mathrm{d} t+i \int_{a}^{b} v(t) \mathrm{d} t
$$

- $\operatorname{Re}\left\{\int_{a}^{b} w(t) \mathrm{d} t\right\}=\int_{a}^{b} \operatorname{Re}\{w(t)\} \mathrm{d} t$, and $\operatorname{Im}\left\{\int_{a}^{b} w(t) \mathrm{d} t\right\}=\int_{a}^{b} \operatorname{Im}\{w(t)\} \mathrm{d} t$
- Fund. Thm. of Calc. If $W^{\prime}(t)=w(t)$ then $\int_{a}^{b} w(t) \mathrm{d} t=W(b)-W(a)$
- $\left|\int_{a}^{b} w(t) \mathrm{d} t\right| \leq \int_{a}^{b}|w(t)| \mathrm{d} t$

9.1 Contours

Defs $x(t), y(t):[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$

$$
C: z(t)=x(t)+i y(t) \quad \forall t \in[a, b]
$$

C is an arc if x, y are CTS
An $\operatorname{arc} C$ is a simple arc (Jordan arc) if it does not cross itself.

An $\operatorname{arc} C$ is a simple closed arc (Jordan curve) if it is simple except for the fact that $z(b)=$ $z(a)$
For closed curves, we call counterclock-wise positively oriented.
If x, y are differentiable on $[a, b]$, and x^{\prime}, y^{\prime} is CTS on $[a, b]$, then we call C a differentiable arc.
A smooth arc is a differentiable arc C such that $\forall t \in(a, b): z^{\prime}(t) \neq 0$.
A smooth arc has unit tangent vector $T=\frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}$ and arc length $L=\int_{a}^{b}\left|z^{\prime}(t)\right| \mathrm{d} t$.
A Contour is a piecewise smooth arc. (consists of a finite number of smooth arcs joined end-toend.)
simple closed contour is a contour that is also a simple closed arc.
Rmk: Parametrizations of arcs are not unique.

Def:
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and C a contour parametrized by $z(t)=x(t)+i y(t)$ with $t \in[a, b]$ with $f=u+i v$ P.W. CTS along C.

$$
\int_{C} f(z) \mathrm{d} z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t=\int_{C}(u+i v)(\mathrm{d} x+i \mathrm{~d} y)
$$

Properties

- For $-C$ with parameterization $z(-t)$ for $t \in[-b,-a]$, then $\int_{-C} f(z) \mathrm{d} z=-\int_{C} f(z) \mathrm{d} z$.
- If C_{1} ends at the point where C_{2} begins $C_{1}+C_{2}$ is their joining and $\int_{C_{1}+C_{2}} f(z) \mathrm{d} z=$ $\int_{C_{1}} f(z) \mathrm{d} z+\int_{C_{2}} f(z) \mathrm{d} z$
- $\int_{C} f(z) \mathrm{d} z$ is independent of the parameterization of C.

Thm: ML Estimate
C contour of length L, f is p.w. CTS on C.

$$
(\exists M \geq 0: \forall z \in C:|f(z)| \leq M) \Longrightarrow\left|\int_{C} f(z) \mathrm{d} z\right| \leq M L
$$

Rmk: The contour integral depends on teh contour (not just its end points).

Def: F on D is an anti-derivative of $\operatorname{CTS} f: D \rightarrow \mathbb{C}$ on D if $F^{\prime}=f$ on D.
Properties:

- F is analytic on D.
- Anti-derivatives differ up to a constant on D

Thm (Fundamental Theorem of Contour Integrals)
Suppose f is CTS in D; Then the following statements are equivalent:

1. $f(z)$ has an anti-derivative $F(s)$ throughout D
2. integrals of $f(z)$ along contours lying entirely in D extending from any fixed point z_{1} to any fixed point z_{2} have the same value. Then for contours C_{1}, C_{2} with shared endpoints $z_{1}, z_{2}, \int_{C_{1}} f(z) \mathrm{d} z=\int_{C_{2}} f(z) \mathrm{d} z:=\int_{z_{1}}^{z_{2}} f(z) \mathrm{d} z=F\left(z_{2}\right)-F\left(z_{1}\right)$
3. $\oint_{C} f(z) \mathrm{d} z=0$ for all closed contours in C in D.

Def. A simply connected domain D is a domain such that every simple closed contour within it encloses only points of D.
A multiply connected domain is a domain that is not simply connected domain.

Thm (Cauchy-Goursat (C-G) Theorem)

Naive:
If f is analytic at all points interior to and on a simple closed contour C and f^{\prime} is CTS at all points interior to and on C, then $\oint_{C} f(z) \mathrm{d} z$.
Version 1:
If f is analytic at all points interior to and on a simple closed contour C, then $\oint_{C} f(z) \mathrm{d} z$.
Version 2:
If D is a simply connected domain and f is analytic in D, then $\int_{C} f(z) \mathrm{d} z=0$ for every closed contour C lying in D.
Version 3:
Suppose that (a) C is simply closed contour (pos. oriented) (b) C_{k} for $k=1, \ldots, n$ are simple closed contours interior to C that are disjoint and whose interiors have no commont points (negatively oriented).
If f is analytic on all of these contours and throughout the multiply connected domain consisting of points inside C and exterior to each C_{k}, then

$$
\int_{C} f(z) \mathrm{d} z+\sum_{k=1}^{n} \int_{C_{k}} f(z) \mathrm{d} z=0
$$

Cor of C-G Version 2. f analytic throughout a simply connected domain D, then f must have an anti-derivative on D.
Cor of C-G Version 2. Entire functions always possess anti-derivatives.
Cor of C-G Version 3 (Principle of Deformation of Path): C_{1} and C_{2} are positively oriented simple closed contours, where C_{1} is interior to C_{2}. Let R be the closed region consisting of these contours and all points between them. If f is analytic on R, then

$$
\int_{C_{1}} f(z) \mathrm{d} z=\int_{C_{2}} f(z) \mathrm{d} z
$$

Thm (Cauchy Integral Formula)
f analytic everywhere inside and on a simple closed contour C (positively oriented). If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

Rmk: f is analytic in R then values of f interior to C are completely determied by values of f on C.

Thm (Cauchy Integral Formula Extensions)
f analytic inside and on a simple closed contour C (positively oriented). If z_{0} is any point interior to C, then

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

Them (Miracle Number ${ }_{1}$)
If f is analytic at z_{0}, then its derivatives of all orders are analytic at z_{0}.
Cor. $f=u+i v$. If f is analytic at z_{0} then u and v have CTS partial derivatives of all orders at $z_{0}=\left(x, y_{0}\right)$ (stronger statement than the second condition of Harmonic, which we had put off when we discussed above).

Thm (Morena's Theorem)
Let f be CTS on a domain D. If $\int_{C} f(z) \mathrm{d} z=0$ for any closed contour C in D then f is analytic in D.

Thm (Cauchy Inequality/Cauchy Estimate)
Let f be analytic inside and on a positively oriented circle C_{R} centered at z_{0} with radius R. If M_{R} denotees the max value of $|f(z)|$ on C_{R}, then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} \quad(n \geq 1)
$$

Thm (Liouville's Theorem; Miracle \#2) If f is entire and bounded in \mathbb{C}, then $f(z)$ is constant in C.

Thm (Fundamental Theorem of Algebra)
Any polynomial of degree $n \geq 1, P(z)=\sum_{k=0}^{n} a_{k} z^{k}$ with $a_{k} \neq 0$ has at least one zero. Cor.
Every polynomial P of degree $n \geq 1$ has precisely n roots in \mathbb{C}. If these roots are denoted by w_{1}, \cdots, w_{n}, then

$$
P(z)=a_{n} \prod_{k=1}^{n}\left(z-w_{k}\right)
$$

Thm (Maximum Modulus Principle)

If f is analytic and not constant in a domain D, then $|f(z)|$ has no maximum value in D.
Cor. If f CTS in \bar{D} and f is analytic and not constant in D, then $|f(z)|$ reaches max somewhere on the boundary ∂D.

10 Series and Sequences

Def $\left\{z_{n}\right\}_{n=1}^{\infty}$ has a limit z if

$$
\forall \epsilon>0 \exists n_{0}>0: \forall n>n_{0}:\left|z_{n}-z\right|<\epsilon
$$

Thm

$$
\lim _{n \rightarrow \infty} z_{n}=z \Longleftrightarrow\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} \operatorname{Re} z_{n}=\operatorname{Re} z \\
\lim _{n \rightarrow \infty} \operatorname{Im} z_{n}=\operatorname{Im} z
\end{array}\right.
$$

Def

$$
\sum_{n=1}^{\infty} z_{n}=S
$$

we say $\sum_{n=1}^{\infty} z_{n}$ converges to S if $S_{N}=\sum_{n=1}^{N} z_{n}$ partial sums satisfy

$$
\lim _{N \rightarrow \infty} S_{N}=S
$$

Thm

$$
\sum_{n=1}^{\infty} z_{n}=S \Longleftrightarrow\left\{\begin{array}{l}
\sum_{n=1}^{\infty} \operatorname{Re} z_{n}=\operatorname{Re} S \\
\sum_{n=1}^{\infty} \operatorname{Im} z_{n}=\operatorname{Im} S
\end{array}\right.
$$

If $\sum_{n=1}^{\infty} z_{n}$ converges, then $\lim _{n \rightarrow \infty} z_{n}=0$.

Def.
A series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
Property: Absolute convergence implies convergence.

Geometric Series If $|r|<1$,

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

Uniform convergence $S_{n}(x) \rightarrow S(x)$ uniformly if

$$
\forall \epsilon>0, \exists n_{0}>0: \forall n>n_{0}: \forall x:\left|S_{n}(x)-S(x)\right|<\epsilon
$$

If a sequence of CTS functions converges uniformly to a function, then that function is CTS> Interchange of limits and derivatives/integrals requires uniform convergence.

Thm (Weierstrass M test)
If $\forall n:\left|a_{n}(x)\right| \leq M_{n} \geq 0$ and $\sum_{n=1}^{\infty} M_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}(x)$ converges uniformly in x.

10.1 Taylor and Laurent Series

Thm (Taylor Theorem; Miracle \#3)
If f is analytic in a disk $D=\left\{\left|z-z_{0}\right|<R_{0}\right\}$, then $f(z)$ has a Taylor series around z_{0},

$$
\forall z \in D: f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

List of Maclaurin Series W11 Tuesday Lecture Notes.

Thm (Laurent Thm)
If f analytic in a annular domain $D=\left\{R_{1}<\left|z-z_{0}\right|<R_{2}\right\}$ and C : any positively oriented simple closed contour around z_{0} in D, then for all $z \in D$

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z, \quad b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} \mathrm{~d} z .
$$

Rmk: Alternative phrasing,

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n}, \quad c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

10.2 Power Series

Thm
If $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges at $z=z_{1} \neq z_{0}$, then it is absolutely convergent at each point z in the open disk $\left|z-z_{0}\right|<R_{1}:=\left|z_{1}-z_{0}\right|$.

Def: largest disk centered at z_{0} such that the series converges is called the disk of convergence i.e. the open set $D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<R\right\}$ where R is the convergence radius.

Thm: If z_{1} is a point inside of disk of convergence D of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, then the series converges uniformly in the closed disk $\left|z-z_{0}\right| \leq R_{1}:=\left|z_{1}=z_{0}\right|$.

In general, we the radius of convergence $R=\frac{1}{\lim \sup \sqrt[n]{\left|a_{n}\right|}}$ Further, if the limit $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ exists then $R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$

Thm (General Result) Consider $0 \leq R \leq \infty$ the convergence radius of $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$.

1. If $\left|z-z_{0}\right|<R$, the series converges absolutely.
2. If $\left|z-z_{0}\right|>R$, the series diverges.
3. For any fixed $r<R$, series converges uniformly for the closed disk $\left\{z:\left|z-z_{0}\right| \leq r\right\}$.

Rmk. Laurent Series have inner radius $R_{-}=\frac{1}{\lim \sup \sqrt[n]{\left|b_{n}\right|}}$

Thm.
$\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ represents a CTS function $S(z)$ at each point insider its disk of convergence $\left|z-z_{0}\right|<R$.

Thm. Integration by terms.
Let $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ on $D=B_{R}\left(z_{0}\right)$. Let C be any contour in D and $g: C \rightarrow \mathbb{C}$ be CTS. Then,

$$
\int_{C} g(z) S(z) \mathrm{d} z
$$

Cor. $S(z)$ is analytic in D, its disk of convergence.
Cor. $f: D \rightarrow \mathbb{C}$ analytic in $D=B_{R}\left(z_{0}\right)$ if and only if $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ in D.

Thm. (diff by terms)
If $S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \mathrm{w} /$ conv. disk $D=B_{R}\left(z_{0}\right)$, then

$$
S^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}
$$

in convergence disk D.

10.2.1 Uniqueness of Taylor/Laurent Series

$$
\begin{gathered}
\left(\forall z \in B_{R}\left(z_{0}\right): \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}\right) \Longrightarrow\left(\forall n: a_{n}=b_{n}\right) \\
\left(\forall z: R_{1}<\left|z-z_{0}\right|<R_{2} \Longrightarrow \sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=-\infty}^{\infty} b_{n}\left(z-z_{0}\right)^{n}\right) \Longrightarrow\left(\forall n: a_{n}=b_{n}\right)
\end{gathered}
$$

10.3 Algebra of Power Series

Consider $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converging on a disk $D_{1}=\left\{\left|z-z_{0}\right|<R_{1}\right\}$ and $g(z)=$ $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converging on a disk $D_{2}=\left\{\left|z-z_{0}\right|<R_{2}\right\}$.
The following are true:

- f, g are analytic on D_{1}, D_{2} respectively.
- $f g$ is analytic on $D_{3}=\left\{\left|z-z_{0}\right|<\min \left\{R_{1}, R_{2}\right\}\right\}$
- $f g$ has a Taylor Series on D_{3} of the form $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ with $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

11 Residues and Poles

Def. A singular point z_{0} is an Isolated Singular Point of f if there exists some deleted neighborhood $B_{\epsilon}^{\prime}\left(z_{0}\right)$ in which f is analytic.

Def. The residue of $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}$, where this Laurent series holds on $B_{\epsilon}^{\prime}\left(z_{0}\right)$, at z_{0} is given by

$$
\operatorname{Res}_{z=z_{0}} f(z)=b_{1}
$$

Thm (Residue Theorem) Let C be a simple positively-oriented closed contour. Let f be analytic inside and on C except for a fininite number of isolated singular points z_{k} for $k=1, \cdots, n$ inside C.

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

Def. f is analytic on $R_{1}<|z|<\infty$, then we call ∞ an isolated singular point of f. For C_{0} a positively oriented curve $|z|=R_{0}>R_{1}$, then

$$
\operatorname{Res}_{z=\infty} f(z):=-\frac{1}{2 \pi i} \int_{C_{0}} f(z) \mathrm{d} z=-\operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(z^{-1}\right)\right)
$$

Let f be analytic on $\mathbb{C} \backslash\left\{z_{1}, \ldots, z_{n}\right\}$ such that $\left\{z_{k}\right\}_{k=1}^{n}$ is a finite set of isolated singular points interior to a simple closed contour C, then

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}_{z=0}\left(\frac{1}{z^{2}} f\left(z^{-1}\right)\right)
$$

Def. Types of Isolated Singular Points of a function f, such that $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+$ $\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ on $B_{R_{2}}^{\prime}\left(z_{0}\right)$.

- Removable: $\forall n>0: b_{n}=0$.
- Essential: For an infinite number of $n>0, b_{n} \neq 0$.
- Pole of order $m: b_{m} \neq 0$ and $\forall n>m: b_{n}=0$.

Thm. If z_{0} is an isolated singular point of f, then the following are equivalent:

1. z_{0} is a pole of order $m>0$ of f
2. $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ where $\phi(z)$ is analytic and non-zero at z_{0}.

Further,

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

Def. z_{0} is a zero of order m if $0=f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(m-1)}\left(z_{0}\right.$ and $f^{(m)}\left(z_{0}\right) \neq 0$.

Thm.
If f is analytic at z_{0} the following are equivalent:

1. z_{0} is a pole of order $m>0$ of f
2. $f(z)=\left(z-z_{0}\right)^{m} g(z)$ where $g(z)$ is analytic and non-zero at z_{0}.

Thm. Let p, q be two functions that are analytic at $z_{0} \mathrm{w} / p\left(z_{0}\right) \neq 0$, and q have a zero of order m at z_{0}. Then $\frac{p(z)}{q(z)}$ has a pole of order m at z_{0}.

Thm. p, q analytic at z_{0}. If $p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0, q^{\prime}\left(z_{0}\right) \neq 0$, then z_{0} is a simple pole of $\frac{p(z)}{q(z)}$ and $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Thm. Let f be analytic at z_{0}. If $f\left(z_{0}\right)=0$, then either $f \equiv 0$ in some neighborhood of z_{0} or there exists some deleted neighborhood $B_{\epsilon}^{\prime}\left(z_{0}\right)$ such that $\forall z \in B_{\epsilon}^{\prime}\left(z_{0}\right): f(z) \neq 0$.

Miracle \#4 (Analytic Continuation)
Thm. A function analytic in a domain D is uniquely determined over D by its values on a (smaller) domain or along a line segment contained in D.
Alternative Phrasing: Suppose f, g analytic in D. If $f=g$ on a smaller domain/line segment contained in D, then $f \equiv g$ in D.

Lemma. Let f be analytic in a domain D. If $f=0$ at each point of a domain/line segment contained in D, then $f \equiv 0$ in D.

Thm. Reflection Principle.
f analytic in some domain D that contains a segment of x-axis and whose lower half is symmetric to upper half wrt the x axis. If $f(x)$ is real for each x on this segment, then

$$
\overline{f(z)}=f(\bar{z}) .
$$

Thm. If z_{0} is a removable singularity of a function f, then f is bounded and analytic in some deleted neighborhood, $B_{\epsilon}^{\prime}\left(z_{0}\right)$.

Thm (Riemann's Theorem of Removable Singularities). If f is bounded and analytic in some $B_{\epsilon}^{\prime}\left(z_{0}\right)$ and f is not analytic at z_{0}, then z_{0} is a removable singularity of f.

If z_{0} is a pole of f, then $\lim _{z \rightarrow z_{0}} f(z)=\infty$.

Thm (Casorati-Weierstrass Theorem). If z_{0} is an essential singularity of f (an analytic function in $B_{\delta_{0}}^{\prime}\left(z_{0}\right)$), then

$$
\forall w_{0} \in \mathbb{C}: \forall \epsilon>0: \forall 0<\delta<\delta_{0}: \exists z \in B_{\delta}^{\prime}\left(z_{0}\right):\left|f(z)-w_{0}\right|<\epsilon
$$

Intuitive Statement of the Great Picard Theorem: In each neighborhood of an essential singularity, the function takes values of every complex number infinitely many times, w/ one possible exception.

12 Computing Indefinite Integrals

Def.

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) \mathrm{d} x
$$

Rmk.
If f is CTS on $(-\infty, \infty)$ and odd, then the PV is 0 .
If f is CTS on $(-\infty, \infty)$ and even, then the PV is $P V \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} f(x) \mathrm{d} x=2 \int_{0}^{\infty} f(x) \mathrm{d} x$.

Form 1: $\frac{p(x)}{q(x)}, x \in \mathbb{R}$ rational functions and even. w/ p, q not having common factor.

1. Find all singularities (poles) in the upper half-plane.
2. Compute the residue and apply residue theorem.
3. Use ML estimate to show integral along C_{R} goes to 0.

This holds for:

$$
\operatorname{deg} Q \geq \operatorname{deg} P+2
$$

Form 2: $\frac{P(x)}{Q(x)} \sin (a x), \frac{P(x)}{Q(x)} \cos (a x)$, for $a>0$.
Trick analyze

$$
f(z)=\frac{P(z)}{Q(z)} e^{i a z}
$$

Jordan Inequality.

$$
\forall R>0: \int_{0}^{\pi} e^{-R \sin \theta} \mathrm{~d} \theta<\frac{\pi}{R}
$$

Jordan Lemma.
Let $g(z)<M_{R}$ on $C_{R}=\left\{R e^{i \theta}: \theta \in[0, \pi]\right\}$, then

$$
\left|\int_{C_{R}} g(z) e^{i a z} \mathrm{~d} z\right|<\frac{M_{R} \pi}{a}
$$

Form 3:
$\int_{-\infty}^{+\infty} f(x) \mathrm{d} x$, where f has a pole in \mathbb{R}.
Add a negatively-oriented loop that hops around the pole on \mathbb{R}.

Form 4:
$\int_{-\infty}^{+\infty} f(x) \mathrm{d} x$, where f involves $\log (x), x^{a}$ or another function that involves branches.
Pick a branch along the negative imaginary axis, and add a negatively-oriented loop that hops around the pole at the origin.

