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1 Intro
Thm: (C, +, ·) is a field.

Lemma: (Binomial formula) If 𝑧1, 𝑧2 ∈ C, 𝑛 ∈ N, then

(𝑧1 + 𝑧2)𝑛 =

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑧𝑘1𝑧

𝑛−𝑘
2 .

Def: Distance between 𝑧1 and 𝑧2.

|𝑧1 − 𝑧2 | =
√︁
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

Lemma: Triangle Inequality

| |𝑧1 | − |𝑧2 | | ≤ |𝑧1 + 𝑧2 | ≤ |𝑧1 | + |𝑧2 |

Def. Complex Conjugate of 𝑧 = 𝑥 + 𝑖𝑦 is 𝑧 = 𝑥 − 𝑖𝑦

Properties:
1. 𝑧 = 𝑧

2. |𝑧 | = |𝑧 |
3. 𝑧 = 𝑧 ⇐⇒ 𝑧 ∈ R
4. 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2, 𝑧1 − 𝑧2 = 𝑧1 − 𝑧2
5. 𝑧1𝑧2 = 𝑧1 𝑧2, 𝑧1𝑧2 =

𝑧1
𝑧2

6. Re{𝑧} = 1
2 (𝑧 + 𝑧), Im{𝑧} = 1

2𝑖 (𝑧 − 𝑧)
7. |𝑧 |2 = 𝑧𝑧 = 𝑧𝑧

8. |𝑧1𝑧2 | = |𝑧1 | |𝑧2 |,
���𝑧1𝑧2 ��� = |𝑧1 |

|𝑧2 |

Def. arg 𝑧 is the set of all arguments. Arg 𝑧 is the principal argument i.e. Arg 𝑧 ∈ (−𝜋, 𝜋]. arg 𝑧 =

{Arg 𝑧 + 2𝑘𝜋 |𝑘 ∈ Z}
Properties:

1. arg(𝑧1𝑧2) = arg(𝑧1) + arg(𝑧2)
2. arg( 𝑧1

𝑧2
) = arg(𝑧1) − arg(𝑧2)

2 Complex Roots
Solutions of 𝑧𝑛 = 𝑧0 = 𝑟0𝑒

𝑖\0 are 𝜔𝑘 = 𝑛
√
𝑟0𝑒

𝑖
\0+2𝑘𝜋

𝑛 for 𝑘 = 0, 1, · · · , 𝑛 − 1. Principal root is 𝜔0.
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3 Topology
Def. 𝐵𝜖 (𝑧0) = {𝑧 ∈ C | |𝑧 − 𝑧0 | < 𝜖}
𝐵′
𝜖 (𝑧0) = {𝑧 ∈ C | 0 < |𝑧 − 𝑧0 | < 𝜖}

Def. 𝑧 is an interior point of a set 𝑆 , if ∃𝜖 : 𝐵𝜖 (𝑧) ⊂ 𝑆

Def. 𝑧 is an exterior point of a set 𝑆 , if ∃𝜖 : 𝑆 ∩ 𝐵𝜖 (𝑧) = ∅
Def. 𝑧 is a boundary point of a set 𝑆 , if ∀𝜖 : 𝑆 ∩ 𝐵𝜖 (𝑧) ≠ ∅ ∧ 𝑆𝑐 ∩ 𝐵𝜖 (𝑧) ≠ ∅

Def. 𝑆 is open if it contains no boundary points.
Def. 𝑆 is closed if it contains all boundary points.
Def. An open set 𝑆 ⊆ C is called connected iff each pair of points in 𝑆 can be joined by a
polygonal line.
Def. 𝑆 is a domain if 𝑆 is open and connected.
Def. 𝑆 is a region if 𝑆 is a domain but with some boundary points.
Def. 𝑆 is bounded if ∃𝑅 > 0 : 𝑆 ⊂ 𝐵𝑅 (0).
Def. accumpulation points / limit points, 𝑧0 is called an accumulation point of a set 𝑆 ⊆ C if
∀𝜖 : 𝐵′

𝜖 (𝑧0) ∩ 𝑆 ≠ ∅ (i.e. there is a convergent sequence to 𝑧0 whose entries are in 𝑆)
4 Limits
Def. lim𝑧→𝑧0 𝑓 (𝑧) = 𝑤0 if ∀𝜖 > 0, ∃𝛿 > 0 : 0 < |𝑧 − 𝑧0 | < 𝛿 =⇒ |𝑓 (𝑧) −𝑤0 | < 𝜖 . Alternatively,
lim𝑧→𝑧0 𝑓 (𝑧) = 𝑤0 if ∀𝜖 > 0, ∃𝛿 > 0 : 𝑓 (𝐵′

𝛿
(𝑧0)) ⊂ 𝐵𝜖 (𝑤0).

Thm. If lim𝑧→𝑧0 𝑓 (𝑧) exists then it is unique.

Properties of Limit
1. lim𝑧→𝑧0 𝑓 (𝑧) = 𝑤0 ⇐⇒ lim𝑧→𝑧0 Re 𝑓 (𝑧) = Re𝑤0 ∧ lim𝑧→𝑧0 Im 𝑓 (𝑧) = Im𝑤0
2. If lim𝑧→𝑧0 𝑓 (𝑧) = 𝑤1 and lim𝑧→𝑧0 𝑔(𝑧) = 𝑤2

a) lim𝑧→𝑧0 𝑎𝑓 (𝑧) + 𝑏𝑔(𝑧) = 𝑎𝑤1 + 𝑏𝑤2
b) lim𝑧→𝑧0 𝑓 (𝑧)𝑔(𝑧) = 𝑤1𝑤2
c) If𝑤2 ≠ 0, lim𝑧→𝑧0 𝑓 (𝑧)/𝑔(𝑧) = 𝑤1/𝑤2

3. For a polynomial 𝑃 (·), lim𝑧→𝑧0 𝑃 (𝑧) = 𝑃 (𝑧0).

Def. Neighborhood of∞, 𝐵𝑅 (∞) B {𝑧 ∈ C| |𝑧 | > 𝑅}



Parth Nobel Theorem List Math 185, Page 3 of 19

Def. lim𝑧→𝑧0 𝑓 (𝑧) = ∞ if ∀𝑅 > 0, ∃𝛿 > 0 : 𝑧 ∈ 𝐵′
𝛿
(𝑧0) =⇒ 𝑓 (𝑧) ∈ 𝐵𝑅 (∞)

i.e. ∀𝑅 > 0, ∃𝛿 > 0 : 0 < |𝑧 − 𝑧0 | < 𝛿 =⇒ |𝑓 (𝑧) | > 𝑅

Def. lim𝑧→∞ 𝑓 (𝑧) = 𝑤0 if ∀𝜖 > 0, ∃𝑅 > 0 : 𝑧 ∈ 𝐵𝑅 (∞) =⇒ 𝑓 (𝑧) ∈ 𝐵𝜖 (𝑤0)
i.e. ∀𝜖 > 0, ∃𝑅 > 0 : |𝑧 | > 𝑅 =⇒ |𝑓 (𝑧) −𝑤0 | < 𝜖

Def. lim𝑧→∞ 𝑓 (𝑧) = ∞ if ∀𝑅 > 0, ∃𝑟 > 0 : 𝑧 ∈ 𝐵𝑟 (∞) =⇒ 𝑓 (𝑧) ∈ 𝐵𝑅 (∞)
i.e. ∀𝑅 > 0, ∃𝑟 > 0 : |𝑧 | > 𝑟 =⇒ |𝑓 (𝑧) −𝑤0 | > 𝑅

Thm
1. lim𝑧→𝑧0 𝑓 (𝑧) = ∞ if lim𝑧→𝑧0

1
𝑓 (𝑧) = 0

2. lim𝑧→∞ 𝑓 (𝑧) = 𝑤0 if lim𝑧→0 𝑓 (𝑧−1) = 𝑤0
3. lim𝑧→∞ 𝑓 (𝑧) = ∞ if lim𝑧→0

1
𝑓 (𝑧−1) = 0

5 Continuity
Def. 𝑓 is continuous (CTS) at 𝑧0 if (1) 𝑓 (𝑧0) is defined, (2) lim𝑧→𝑧0 𝑓 (𝑧) exists, (3) lim𝑧→𝑧0 𝑓 (𝑧) =
𝑓 (𝑧0). i.e. ∀𝜖 > 0, ∃𝛿 > 0 : |𝑧 − 𝑧0 | < 𝛿 =⇒ |𝑓 (𝑧) − 𝑓 (𝑧0) | < 𝜖 .

Thm1. 𝑓 : 𝐴 → 𝐵,𝑔 : 𝐵 → 𝐶 𝐴, 𝐵,𝐶 ⊂ C. If 𝑓 is CTS at 𝑧0 and 𝑔 is CTS at 𝑓 (𝑧0), then
𝑔 ◦ 𝑓 : 𝐴 → 𝐶 is CTS at 𝑧0.

Thm2. If 𝑓 is CTS at 𝑧0, 𝑓 (𝑧0) ≠ 0, then 𝑓 ≠ 0 in a whole neighborhood of 𝑧0.

Thm3. 𝑓 (𝑧) = 𝑢 (𝑥,𝑦) + 𝑖𝑣 (𝑥,𝑦), 𝑓 is CTS at 𝑧0 = 𝑥0 + 𝑖𝑦0 if and only if 𝑢, 𝑣 are CTS at (𝑥0, 𝑦0).

Thm4. If 𝑓 : 𝑅 → C is CTS in a closed bounded region 𝑅, there exists a real number𝑀 > 0 such
that

∀𝑧 ∈ 𝑅 : |𝑓 (𝑧) | ≤ 𝑀

but with equality for at least one 𝑧0 ∈ 𝑅
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6 Derivatives
Def. The derivative of 𝑓 at 𝑧0 is the limit

𝑓 ′(𝑧0) = lim
𝑧→𝑧0

𝑓 (𝑧) − 𝑓 (𝑧0)
𝑧 − 𝑧0

= lim
Δ𝑧→0

𝑓 (𝑧0 + Δ𝑧) − 𝑓 (𝑧0)
Δ𝑧

Rmk: 𝑧, Re 𝑧, Im 𝑧 are not differentiable anywhere.

1. d
d𝑧𝑐 = 0

2. d
d𝑧𝑧 = 1

3. d
d𝑧 (𝑐 𝑓 (𝑧)) = 𝑐 d

d𝑧 𝑓 (𝑧)
4. d

d𝑧𝑧
𝑛 = 𝑛𝑧𝑛−1

5. (𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′
6. (𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑓 𝑔′

7. (𝑓 ◦ 𝑔)′ = (𝑓 ′ ◦ 𝑔)𝑔′

8. When 𝑔(𝑧) ≠ 0,
(
𝑓

𝑔

)′
=

𝑔𝑓 ′−𝑓 𝑔′
𝑔2

Cauchy-Riemann Equations (Necessary Condition)
Thm. If 𝑓 (𝑧) = 𝑢 (𝑥,𝑦) + 𝑖𝑣 (𝑥,𝑦) for 𝑧 = 𝑥 + 𝑖𝑦 is differentiable at 𝑧0, then the partial derivatives
of 𝑢 and 𝑣 exist and satisfy certain equations:

𝑢𝑥 = 𝑣𝑦 𝑢𝑦 = −𝑣𝑥
Further, 𝑓 ′(𝑧0) = 𝑢𝑥 + 𝑖𝑣𝑥 .

Thm. Let 𝑓 (𝑧) = 𝑢 (𝑥,𝑦) + 𝑖𝑣 (𝑥,𝑦) be defined throughout some 𝜖-neighborhood of 𝑧0 = 𝑥0 + 𝑖𝑦0
and suppose that
(a) 𝑢𝑥 , 𝑢𝑦, 𝑣𝑥 , 𝑣𝑦 exist everywhere in the neighborhood.
(a) these partials are CTS at (𝑥0, 𝑦0) and satisfy C-R.
Then 𝑓 ′(𝑧0) exists and its value is 𝑓 ′(𝑧0) = (𝑢𝑥 + 𝑖𝑣𝑥 ) (𝑥0, 𝑦0).

C-R Polar form.
Let 𝑓 (𝑟𝑒𝑖\ ) = 𝑢 (𝑟, \ ) + 𝑖𝑣 (𝑟, \ ) then if 𝑓 is differentiable at 𝑧0 then

𝑟𝑢𝑟 = 𝑣\ 𝑢\ = −𝑟𝑣𝑟 .

Thm. C-R Sufficient (Polar form).
Let 𝑓 (𝑧) = 𝑢 (𝑟, \ ) + 𝑖𝑣 (𝑟, \ ) be defined in some 𝜖-neighborhood of a nonzero point 𝑧0 = 𝑟0, 𝑒

𝑖\0

and suppose that
(a) 𝑢𝑟 , 𝑢\ , 𝑣𝑟 , 𝑣\ exist everywhere in the neighborhood
(b) and CTS at (𝑟0, \0) and satisfy polar C-R (i.e. 𝑟𝑢𝑟 = 𝑣\ , 𝑢\ = −𝑟𝑣𝑟 ) at (𝑟0, \0).
Then 𝑓 ′(𝑧0) exists and 𝑓 ′(𝑧0) = 𝑒−𝑖\ (𝑢𝑟 + 𝑖𝑣𝑟 )
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7 Special Types of Functions
7.1 Analytic Functions
Def. Analytic functions a.k.a. Holomorphic functions.
1. 𝑓 is analytic at a point 𝑧0 if it is analytic in some neighborhood of 𝑧0.
2. Consider 𝑆 an open set, 𝑓 : 𝑆 → C is analytic in 𝑆 , if ∀𝑧 ∈ 𝑆 : 𝑓 ′(𝑧) exists.
3. 𝑓 is entire if 𝑓 : C→ C is analytic in C.

Properties of analytic functions.
1. 𝑓 , 𝑔 analytic in 𝑆 then 𝑓 + 𝑔, 𝑓 𝑔, and 𝑓

𝑔
if 𝑔 ≠ 0 in 𝑆 are analytic.

2. 𝑔 ◦ 𝑓 chain rule holds.
3. 𝑓 analytic in a domain 𝐷 implies 𝑓 is CTS in 𝐷 and C-R Eqs are satisfied in 𝐷 .
4. If 𝑓 ′(𝑧) = 0 everywhere in a domain 𝐷 , then 𝑓 (𝑧) must be constant throughout 𝐷 .

(Proved in lecture W4A)

Def. 𝑧0 is called a singular point if 𝑓 is not analytic at 𝑧0 but is analytic at some point in every
neighborhood.
7.2 Harmonic Functions
Def. For 𝐷 ⊆ R2 𝐻 : 𝐷 → 𝑅 is harmonic if (1) H has CTS partial derivatives up to 2nd order and
satisfies Laplace’s Equation,

𝐻𝑥𝑥 + 𝐻𝑦𝑦 = 0

Thm. If 𝑓 (𝑧) = 𝑢 (𝑥,𝑦) + 𝑖𝑣 (𝑥,𝑦) is analytic in a domain 𝐷 , then its components 𝑢 and 𝑣 are
harmonic.
7.3 Elementary Functions
Def. 𝑒𝑧 = 𝑒𝑥 (cos𝑦 + 𝑖 sin𝑦).

Properties
1. (𝑒𝑧)′ = 𝑒𝑧 . 𝑒𝑧 is entire.
2. |𝑒𝑧 | = 𝑒𝑥 . arg 𝑒𝑧 = 𝑦 + 2𝑛𝜋 for all 𝑛 ∈ Z.
3. 𝑒𝑧 is periodic with period 2𝜋𝑖 .
4. ∀𝑧 ∈ C : 𝑒𝑧 ≠ 0
5. 𝑒𝑧1𝑒𝑧2 = 𝑒𝑧1+𝑧2 , 𝑒𝑧1

𝑒𝑧2 = 𝑒𝑧1−𝑧2

6. 𝑒0 = 1, 1
𝑒𝑧

= 𝑒−𝑧
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Def. For 𝑧 = 𝑟𝑒𝑖\ ≠ 0, log 𝑧 = ln 𝑟 + 𝑖 (\ + 2𝑛𝜋) for 𝑛 ∈ Z
Log 𝑧 = ln 𝑟 + 𝑖 Arg 𝑧
log 𝑧 = Log 𝑧 + 𝑖2𝑛𝜋 for 𝑛 ∈ Z.

Log is not CTS on C \ {0}, accordingly Branches fix it.
Fix 𝛼 ∈ R restrict value of \ ∈ arg 𝑧 to 𝛼 < \ < 𝛼 + 2𝜋 .
The define log 𝑧 = ln 𝑟 + 𝑖\ on 𝑟 > 0, 𝛼 < \ < 𝛼 + 2𝜋 and we have CTS and analytic on its domain.

Def. A branch of a multi-valued function 𝑓 is any single-valued function 𝐹 that is analytic in
some domain 𝐷 and for which 𝐹 (𝑧) has one of the values of 𝑓 (𝑧).
Def. A branch cut is a line or curve that is introduced to define a branch.
Def. Branch points are points on the branch cut that are singular points or points that are
shared by all branch cuts.

Identities of log
1. log(𝑧1𝑧2) = log 𝑧1 + log 𝑧2
2. log(𝑧1/𝑧2) = log 𝑧1 − log 𝑧2
3. for 𝑛 ∈ Z, 𝑧 ≠ 0 𝑧𝑛 = 𝑒𝑛 log 𝑧

4. for 𝑛 ∈ Z \ {0} 𝑧1/𝑛 = 𝑒
1
𝑛
log 𝑧

Def. Power functions:
Fix 𝑐 ∈ C.
𝑧𝑐 = 𝑒𝑐 log 𝑧 (multi-valued)
Branch cuts are teh same as logarithm.
On a branch cut of 𝑧, d

d𝑧𝑧
𝑐 = 𝑐𝑧𝑐−1.

Def. 𝑐𝑧 = 𝑒𝑧 log 𝑐 , specify a value of log 𝑐 to make the function single-valued and entire.

d
d𝑧𝑐

𝑧 = 𝑐𝑧 log 𝑐
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8 Trigonometric Functions
Def.

sin(𝑧) B 𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖 cos(𝑧) B 𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2 𝑧 ∈ C

and

sinh(𝑧) B 𝑒𝑧 − 𝑒−𝑧

2 cosh(𝑧) B 𝑒𝑧 + 𝑒−𝑧

2 𝑧 ∈ C

Properties
1. sin(𝑧), cos(𝑧) are entire (usual derivatives)
2. sin is odd, cos is even.
3. sin(𝑧1 + 𝑧2) = sin(𝑧1) cos(𝑧2) + cos(𝑧1) sin(𝑧2) and cos(𝑧1 + 𝑧2) = cos(𝑧1) cos(𝑧2) −

sin(𝑧1) sin(𝑧2)
4. sin2(𝑧) + cos2(𝑧) = 1
5. sin 𝑧 = sin𝑥 cosh𝑦 + 𝑖 cos𝑥 sinh𝑦, cos 𝑧 = cos𝑥 cosh𝑦 − 𝑖 sin𝑥 sinh𝑦
6. |sin 𝑧 |2 = sin2 𝑥 + sinh2𝑦, |cos 𝑧 |2 = cos2 𝑥 + sinh2𝑦

Def. A zero of 𝑓 (𝑧) is a 𝑧0 ∈ C such that 𝑓 (𝑧0) = 0

Thm. The zeros of sin 𝑧 and cos 𝑧 in C are the same as sin𝑥 and cos𝑥 in R.
i.e. sin 𝑧 = 0 ⇐⇒ 𝑧 ∈ 𝜋Z and cos 𝑧 = 0 ⇐⇒ 𝑧 ∈ 𝜋

2 + 𝜋Z

Properties of Hyperbolic Functions
1. (sinh 𝑧)′ = cosh 𝑧, (cosh 𝑧)′ = sinh 𝑧
2. cosh2(𝑧) = 1 + sinh2(𝑧)
3. sinh(𝑖𝑧) = 𝑖 sin 𝑧, cosh(𝑖𝑧) = cos 𝑧
4. Thm: sinh 𝑧 = 0 ⇐⇒ 𝑧 ∈ 𝜋𝑖Z, and cosh 𝑧 = 0 ⇐⇒ 𝑧 ∈ 𝜋

2 𝑖 + 𝜋𝑖Z

Def. A function is conformal if it preserves angles locally.
i.e.
An analytic complex-valued function is conformal at 𝑧0 if whenever 𝑟1, 𝑟2 are smooth curves
passing through 𝑧0 at 𝑡 = 0 with nonzero tangents, then the curves 𝑓 ◦ 𝑟1, 𝑓 ◦ 𝑟2 have non-zero
tangents at 𝑓 (𝑧0) and the angle from 𝑟 ′1(0) to 𝑟 ′2(0) and the angle from (𝑓 ◦ 𝑟1)′(0) to (𝑓 ◦ 𝑟2)′(0)
are the same.
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A conformal mapping 𝑓 : 𝐷 → 𝑉 (with 𝐷,𝑉 domains) is a bijective analytic function that is
conformal at each point of 𝐷 .
If such an 𝑓 exists we say 𝐷 and 𝑉 are conformally equivalent.
Alt def:
𝑓 is conformal in 𝐷 if 𝐹 is analytic in 𝐷 and ∀𝑧 ∈ 𝐷 : 𝑓 ′(𝑧) ≠ 0.

If 𝑧0 is a critical point of 𝑓 (𝑧), there is an integer𝑚 ≥ 2 (specifically the smallest integer
𝑓 (𝑚) (𝑧0) ≠ 0) such that the angle between two smooth curves passing through 𝑧0 is multiplyied
by𝑚 under 𝑓 .

If 𝑓 (𝑧) is conformal at 𝑧0, it has a local inverse there. That is𝑤0 = 𝑓 (𝑧0), ∃! function such that
𝑧 = 𝑔(𝑤) is defined and analytic in a neighborhood of𝑤0 denoted as 𝑁 such that 𝑔(𝑤0) = 𝑧0
and 𝑓 (𝑔(𝑤)) = 𝑤 for all𝑤 ∈ 𝑁 .
Further 𝑔′(𝑤) = 1

𝑓 ′(𝑧) .
9 Integrals
Def. A path𝑤 : [𝑎, 𝑏] ⊆ R→ C such that𝑤 (𝑡) = 𝑢 (𝑡) + 𝑖𝑣 (𝑡).
Def.𝑤 ′(𝑡) = 𝑢′(𝑡) + 𝑖𝑣′(𝑡) if 𝑢′ and 𝑣′ exist at 𝑡 .
Properties:

• If 𝑓 : C→ C analytic, 𝑢, 𝑣 differentiable at a point 𝑡 ∈ R, then d
d𝑡 𝑓 (𝑤 (𝑡)) = 𝑓 ′(𝑤 (𝑡))𝑤 ′(𝑡)

• Mean Value Theorem Does NOT Hold

Def. Integral of𝑤 (𝑡).∫ 𝑏

𝑎

𝑤 (𝑡) d𝑡 B
∫ 𝑏

𝑎

𝑢 (𝑡) d𝑡 + 𝑖
∫ 𝑏

𝑎

𝑣 (𝑡) d𝑡

• Re
{∫ 𝑏

𝑎
𝑤 (𝑡) d𝑡

}
=

∫ 𝑏

𝑎
Re{𝑤 (𝑡)} d𝑡 , and Im

{∫ 𝑏

𝑎
𝑤 (𝑡) d𝑡

}
=

∫ 𝑏

𝑎
Im{𝑤 (𝑡)} d𝑡

• Fund. Thm. of Calc. If𝑊 ′(𝑡) = 𝑤 (𝑡) then
∫ 𝑏

𝑎
𝑤 (𝑡) d𝑡 =𝑊 (𝑏) −𝑊 (𝑎)

•
���∫ 𝑏

𝑎
𝑤 (𝑡) d𝑡

��� ≤ ∫ 𝑏

𝑎
|𝑤 (𝑡) | d𝑡

9.1 Contours
Defs 𝑥 (𝑡), 𝑦 (𝑡) : [𝑎, 𝑏] ⊆ R→ R

𝐶 : 𝑧 (𝑡) = 𝑥 (𝑡) + 𝑖𝑦 (𝑡) ∀𝑡 ∈ [𝑎, 𝑏]

𝐶 is an arc if 𝑥,𝑦 are CTS
An arc 𝐶 is a simple arc (Jordan arc) if it does not cross itself.
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An arc 𝐶 is a simple closed arc (Jordan curve) if it is simple except for the fact that 𝑧 (𝑏) =

𝑧 (𝑎)
For closed curves, we call counterclock-wise positively oriented.
If 𝑥,𝑦 are differentiable on [𝑎, 𝑏], and 𝑥′, 𝑦′ is CTS on [𝑎, 𝑏], then we call 𝐶 a differentiable arc.
A smooth arc is a differentiable arc 𝐶 such that ∀𝑡 ∈ (𝑎, 𝑏) : 𝑧′(𝑡) ≠ 0.
A smooth arc has unit tangent vector 𝑇 =

𝑧 ′(𝑡)
|𝑧 ′(𝑡) | and arc length 𝐿 =

∫ 𝑏

𝑎
|𝑧′(𝑡) | d𝑡 .

A Contour is a piecewise smooth arc. (consists of a finite number of smooth arcs joined end-to-
end.)
simple closed contour is a contour that is also a simple closed arc.
Rmk: Parametrizations of arcs are not unique.

Def:
Let 𝑓 : C→ C and 𝐶 a contour parametrized by 𝑧 (𝑡) = 𝑥 (𝑡) + 𝑖𝑦 (𝑡) with 𝑡 ∈ [𝑎, 𝑏] with 𝑓 = 𝑢 + 𝑖𝑣
P.W. CTS along 𝐶 .

∫
𝐶

𝑓 (𝑧) d𝑧 B
∫ 𝑏

𝑎

𝑓 (𝑧 (𝑡))𝑧′(𝑡) d𝑡 =
∫
𝐶

(𝑢 + 𝑖𝑣) (d𝑥 + 𝑖d𝑦)

Properties
• For −𝐶 with parameterization 𝑧 (−𝑡) for 𝑡 ∈ [−𝑏,−𝑎], then

∫
−𝐶 𝑓 (𝑧)d𝑧 = −

∫
𝐶
𝑓 (𝑧)d𝑧.

• If 𝐶1 ends at the point where 𝐶2 begins 𝐶1 + 𝐶2 is their joining and
∫
𝐶1+𝐶2

𝑓 (𝑧) d𝑧 =∫
𝐶1

𝑓 (𝑧) d𝑧 +
∫
𝐶2

𝑓 (𝑧) d𝑧
•

∫
𝐶
𝑓 (𝑧) d𝑧 is independent of the parameterization of 𝐶 .

Thm: ML Estimate
𝐶 contour of length 𝐿, 𝑓 is p.w. CTS on 𝐶 .

(∃𝑀 ≥ 0 : ∀𝑧 ∈ 𝐶 : |𝑓 (𝑧) | ≤ 𝑀) =⇒
����∫

𝐶

𝑓 (𝑧) d𝑧
���� ≤ 𝑀𝐿

Rmk: The contour integral depends on teh contour (not just its end points).

Def: 𝐹 on 𝐷 is an anti-derivative of CTS 𝑓 : 𝐷 → C on 𝐷 if 𝐹 ′ = 𝑓 on 𝐷 .
Properties:

• 𝐹 is analytic on 𝐷 .
• Anti-derivatives differ up to a constant on 𝐷
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Thm (Fundamental Theorem of Contour Integrals)
Suppose 𝑓 is CTS in 𝐷 ; Then the following statements are equivalent:

1. 𝑓 (𝑧) has an anti-derivative 𝐹 (𝑠) throughout 𝐷
2. integrals of 𝑓 (𝑧) along contours lying entirely in 𝐷 extending from any fixed point 𝑧1 to

any fixed point 𝑧2 have the same value. Then for contours 𝐶1,𝐶2 with shared endpoints
𝑧1, 𝑧2,

∫
𝐶1

𝑓 (𝑧) d𝑧 =
∫
𝐶2

𝑓 (𝑧) d𝑧 B
∫ 𝑧2
𝑧1

𝑓 (𝑧) d𝑧 = 𝐹 (𝑧2) − 𝐹 (𝑧1)
3.

∮
𝐶
𝑓 (𝑧) d𝑧 = 0 for all closed contours in 𝐶 in 𝐷 .

Def. A simply connected domain 𝐷 is a domain such that every simple closed contour within
it encloses only points of 𝐷 .
Amultiply connected domain is a domain that is not simply connected domain.

Thm (Cauchy-Goursat (C-G) Theorem)
Naive:
If 𝑓 is analytic at all points interior to and on a simple closed contour 𝐶 and 𝑓 ′ is CTS at all
points interior to and on 𝐶 , then

∮
𝐶
𝑓 (𝑧) d𝑧.

Version 1:
If 𝑓 is analytic at all points interior to and on a simple closed contour 𝐶 , then

∮
𝐶
𝑓 (𝑧) d𝑧.

Version 2:
If 𝐷 is a simply connected domain and 𝑓 is analytic in 𝐷 , then

∫
𝐶
𝑓 (𝑧) d𝑧 = 0 for every closed

contour 𝐶 lying in 𝐷 .
Version 3:
Suppose that (a) 𝐶 is simply closed contour (pos. oriented) (b) 𝐶𝑘 for 𝑘 = 1, . . . , 𝑛 are simple
closed contours interior to 𝐶 that are disjoint and whose interiors have no commont points
(negatively oriented).
If 𝑓 is analytic on all of these contours and throughout the multiply connected domain consist-
ing of points inside 𝐶 and exterior to each 𝐶𝑘 , then∫

𝐶

𝑓 (𝑧) d𝑧 +
𝑛∑︁

𝑘=1

∫
𝐶𝑘

𝑓 (𝑧) d𝑧 = 0

Cor of C-G Version 2. 𝑓 analytic throughout a simply connected domain 𝐷 , then 𝑓 must have
an anti-derivative on 𝐷 .
Cor of C-G Version 2. Entire functions always possess anti-derivatives.
Cor of C-G Version 3 (Principle of Deformation of Path): 𝐶1 and 𝐶2 are positively oriented
simple closed contours, where 𝐶1 is interior to 𝐶2. Let 𝑅 be the closed region consisting of these
contours and all points between them. If 𝑓 is analytic on 𝑅, then∫

𝐶1

𝑓 (𝑧) d𝑧 =

∫
𝐶2

𝑓 (𝑧) d𝑧
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Thm (Cauchy Integral Formula)
𝑓 analytic everywhere inside and on a simple closed contour 𝐶 (positively oriented). If 𝑧0 is any
point interior to 𝐶 , then

𝑓 (𝑧0) =
1
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
𝑧 − 𝑧0

d𝑧

Rmk: 𝑓 is analytic in 𝑅 then values of 𝑓 interior to 𝐶 are completely determied by values of 𝑓
on 𝐶 .

Thm (Cauchy Integral Formula Extensions)
𝑓 analytic inside and on a simple closed contour 𝐶 (positively oriented). If 𝑧0 is any point inte-
rior to 𝐶 , then

𝑓 (𝑛) (𝑧0) =
𝑛!
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1

d𝑧

Them (Miracle Number 1)
If 𝑓 is analytic at 𝑧0, then its derivatives of all orders are analytic at 𝑧0.
Cor. 𝑓 = 𝑢 + 𝑖𝑣 . If 𝑓 is analytic at 𝑧0 then 𝑢 and 𝑣 have CTS partial derivatives of all orders at
𝑧0 = (𝑥,𝑦0) (stronger statement than the second condition of Harmonic, which we had put off
when we discussed above).

Thm (Morena’s Theorem)
Let 𝑓 be CTS on a domain 𝐷 . If

∫
𝐶
𝑓 (𝑧) d𝑧 = 0 for any closed contour 𝐶 in 𝐷 then 𝑓 is analytic

in 𝐷 .

Thm (Cauchy Inequality/Cauchy Estimate)
Let 𝑓 be analytic inside and on a positively oriented circle 𝐶𝑅 centered at 𝑧0 with radius 𝑅. If𝑀𝑅

denotees the max value of |𝑓 (𝑧) | on 𝐶𝑅 , then���𝑓 (𝑛) (𝑧0)��� ≤ 𝑛!𝑀𝑅

𝑅𝑛
(𝑛 ≥ 1)

Thm (Liouville’s Theorem; Miracle #2) If 𝑓 is entire and bounded in C, then 𝑓 (𝑧) is constant in
C.
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Thm (Fundamental Theorem of Algebra)
Any polynomial of degree 𝑛 ≥ 1, 𝑃 (𝑧) = ∑𝑛

𝑘=0 𝑎𝑘𝑧
𝑘 with 𝑎𝑘 ≠ 0 has at least one zero.

Cor.
Every polynomial 𝑃 of degree 𝑛 ≥ 1 has precisely 𝑛 roots in C. If these roots are denoted by
𝑤1, · · · ,𝑤𝑛 , then

𝑃 (𝑧) = 𝑎𝑛

𝑛∏
𝑘=1

(𝑧 −𝑤𝑘)

Thm (Maximum Modulus Principle)
If 𝑓 is analytic and not constant in a domain 𝐷 , then |𝑓 (𝑧) | has no maximum value in 𝐷 .
Cor. If 𝑓 CTS in 𝐷 and 𝑓 is analytic and not constant in 𝐷 , then |𝑓 (𝑧) | reaches max somewhere
on the boundary 𝜕𝐷 .
10 Series and Sequences
Def {𝑧𝑛}∞𝑛=1 has a limit 𝑧 if

∀𝜖 > 0∃𝑛0 > 0 : ∀𝑛 > 𝑛0 : |𝑧𝑛 − 𝑧 | < 𝜖

Thm

lim
𝑛→∞

𝑧𝑛 = 𝑧 ⇐⇒
{
lim𝑛→∞ Re 𝑧𝑛 = Re 𝑧
lim𝑛→∞ Im 𝑧𝑛 = Im 𝑧

Def
∞∑︁
𝑛=1

𝑧𝑛 = 𝑆

we say
∑∞

𝑛=1 𝑧𝑛 converges to 𝑆 if 𝑆𝑁 =
∑𝑁

𝑛=1 𝑧𝑛 partial sums satisfy

lim
𝑁→∞

𝑆𝑁 = 𝑆

Thm
∞∑︁
𝑛=1

𝑧𝑛 = 𝑆 ⇐⇒
{∑∞

𝑛=1 Re 𝑧𝑛 = Re 𝑆∑∞
𝑛=1 Im 𝑧𝑛 = Im 𝑆
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If
∑∞

𝑛=1 𝑧𝑛 converges, then lim𝑛→∞ 𝑧𝑛 = 0.

Def.
A series

∑∞
𝑛=1 𝑎𝑛 is absolutely convergent if

∑∞
𝑛=1 |𝑎𝑛 | converges.

Property: Absolute convergence implies convergence.

Geometric Series If |𝑟 | < 1,
∞∑︁
𝑛=0

𝑟𝑛 =
1

1 − 𝑟

Uniform convergence 𝑆𝑛 (𝑥) → 𝑆 (𝑥) uniformly if
∀𝜖 > 0, ∃𝑛0 > 0 : ∀𝑛 > 𝑛0 : ∀𝑥 : |𝑆𝑛 (𝑥) − 𝑆 (𝑥) | < 𝜖

If a sequence of CTS functions converges uniformly to a function, then that function is CTS>
Interchange of limits and derivatives/integrals requires uniform convergence.

Thm (Weierstrass M test)
If ∀𝑛 : |𝑎𝑛 (𝑥) | ≤ 𝑀𝑛 ≥ 0 and

∑∞
𝑛=1𝑀𝑛 converges then

∑∞
𝑛=1 𝑎𝑛 (𝑥) converges uniformly in 𝑥 .

10.1 Taylor and Laurent Series
Thm (Taylor Theorem; Miracle #3)
If 𝑓 is analytic in a disk 𝐷 = {|𝑧 − 𝑧0 | < 𝑅0}, then 𝑓 (𝑧) has a Taylor series around 𝑧0,

∀𝑧 ∈ 𝐷 : 𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑓 (𝑛) (𝑧0)
𝑛! (𝑧 − 𝑧0)𝑛

List of Maclaurin Series W11 Tuesday Lecture Notes.

Thm (Laurent Thm)
If 𝑓 analytic in a annular domain 𝐷 = {𝑅1 < |𝑧 − 𝑧0 | < 𝑅2} and 𝐶: any positively oriented
simple closed contour around 𝑧0 in 𝐷 , then for all 𝑧 ∈ 𝐷

𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛 +
∞∑︁
𝑛=1

𝑏𝑛

(𝑧 − 𝑧0)𝑛

where

𝑎𝑛 =
1
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1

d𝑧 , 𝑏𝑛 =
1
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)−𝑛+1

d𝑧 .

Rmk: Alternative phrasing,

𝑓 (𝑧) =
∞∑︁

𝑛=−∞
𝑐𝑛 (𝑧 − 𝑧0)𝑛, 𝑐𝑛 =

1
2𝜋𝑖

∫
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)𝑛+1

d𝑧 .
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10.2 Power Series
Thm
If

∑∞
𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 converges at 𝑧 = 𝑧1 ≠ 𝑧0, then it is absolutely convergent at each point 𝑧 in

the open disk |𝑧 − 𝑧0 | < 𝑅1 B |𝑧1 − 𝑧0 |.

Def: largest disk centered at 𝑧0 such that the series converges is called the disk of conver-
gence i.e. the open set 𝐷 = {𝑧 ∈ C : |𝑧 − 𝑧0 | < 𝑅} where 𝑅 is the convergence radius.

Thm: If 𝑧1 is a point inside of disk of convergence 𝐷 of
∑∞

𝑛=0 𝑎𝑛 (𝑧−𝑧0)𝑛 , then the series converges
uniformly in the closed disk |𝑧 − 𝑧0 | ≤ 𝑅1 B |𝑧1 = 𝑧0 |.

In general, we the radius of convergence 𝑅 = 1
lim sup 𝑛

√
|𝑎𝑛 |

Further, if the limit lim𝑛→∞

��� 𝑎𝑛
𝑎𝑛+1

��� exists
then 𝑅 = lim𝑛→∞

��� 𝑎𝑛
𝑎𝑛+1

���
Thm (General Result) Consider 0 ≤ 𝑅 ≤ ∞ the convergence radius of

∑∞
𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 .

1. If |𝑧 − 𝑧0 | < 𝑅, the series converges absolutely.
2. If |𝑧 − 𝑧0 | > 𝑅, the series diverges.
3. For any fixed 𝑟 < 𝑅, series converges uniformly for the closed disk {𝑧 : |𝑧 − 𝑧0 | ≤ 𝑟 }.

Rmk. Laurent Series have inner radius 𝑅− = 1
lim sup 𝑛

√
|𝑏𝑛 |

Thm.∑∞
𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 represents a CTS function 𝑆 (𝑧) at each point insider its disk of convergence

|𝑧 − 𝑧0 | < 𝑅.

Thm. Integration by terms.
Let 𝑆 (𝑧) = ∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 on 𝐷 = 𝐵𝑅 (𝑧0). Let 𝐶 be any contour in 𝐷 and 𝑔 : 𝐶 → C be CTS.
Then,∫

𝐶

𝑔(𝑧)𝑆 (𝑧) d𝑧

Cor. 𝑆 (𝑧) is analytic in 𝐷 , its disk of convergence.
Cor. 𝑓 : 𝐷 → C analytic in 𝐷 = 𝐵𝑅 (𝑧0) if and only if 𝑓 (𝑧) = ∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 in 𝐷 .
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Thm. (diff by terms)
If 𝑆 (𝑧) = ∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 w/ conv. disk 𝐷 = 𝐵𝑅 (𝑧0), then

𝑆′(𝑧) =
∞∑︁
𝑛=1

𝑛𝑎𝑛 (𝑧 − 𝑧0)𝑛−1

in convergence disk 𝐷 .

10.2.1 Uniqueness of Taylor/Laurent Series

(
∀𝑧 ∈ 𝐵𝑅 (𝑧0) :

∞∑︁
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛 =

∞∑︁
𝑛=0

𝑏𝑛 (𝑧 − 𝑧0)𝑛
)

=⇒ (∀𝑛 : 𝑎𝑛 = 𝑏𝑛)

(
∀𝑧 : 𝑅1 < |𝑧 − 𝑧0 | < 𝑅2 =⇒

∞∑︁
𝑛=−∞

𝑎𝑛 (𝑧 − 𝑧0)𝑛 =

∞∑︁
𝑛=−∞

𝑏𝑛 (𝑧 − 𝑧0)𝑛
)

=⇒ (∀𝑛 : 𝑎𝑛 = 𝑏𝑛)

10.3 Algebra of Power Series
Consider 𝑓 (𝑧) =

∑∞
𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 converging on a disk 𝐷1 = {|𝑧 − 𝑧0 | < 𝑅1} and 𝑔(𝑧) =∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 converging on a disk 𝐷2 = {|𝑧 − 𝑧0 | < 𝑅2}.
The following are true:

• 𝑓 , 𝑔 are analytic on 𝐷1, 𝐷2 respectively.
• 𝑓 𝑔 is analytic on 𝐷3 = {|𝑧 − 𝑧0 | < min{𝑅1, 𝑅2}}
• 𝑓 𝑔 has a Taylor Series on 𝐷3 of the form

∑∞
𝑛=0 𝑐𝑛 (𝑧 − 𝑧0)𝑛 with 𝑐𝑛 =

∑𝑛
𝑘=0 𝑎𝑘𝑏𝑛−𝑘 .

11 Residues and Poles
Def. A singular point 𝑧0 is an Isolated Singular Point of 𝑓 if there exists some deleted neigh-
borhood 𝐵′

𝜖 (𝑧0) in which 𝑓 is analytic.

Def. The residue of 𝑓 (𝑧) = ∑∞
𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 +

∑∞
𝑛=1 𝑏𝑛 (𝑧 − 𝑧0)−𝑛 , where this Laurent series holds

on 𝐵′
𝜖 (𝑧0), at 𝑧0 is given by

Res𝑧=𝑧0 𝑓 (𝑧) = 𝑏1
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Thm (Residue Theorem) Let 𝐶 be a simple positively-oriented closed contour. Let 𝑓 be analytic
inside and on 𝐶 except for a fininite number of isolated singular points 𝑧𝑘 for 𝑘 = 1, · · · , 𝑛
inside 𝐶 .∫

𝐶

𝑓 (𝑧) d𝑧 = 2𝜋𝑖
𝑛∑︁

𝑘=1
Res𝑧=𝑧𝑘 𝑓 (𝑧)

Def. 𝑓 is analytic on 𝑅1 < |𝑧 | < ∞, then we call∞ an isolated singular point of 𝑓 . For 𝐶0 a
positively oriented curve |𝑧 | = 𝑅0 > 𝑅1, then

Res𝑧=∞ 𝑓 (𝑧) B − 1
2𝜋𝑖

∫
𝐶0

𝑓 (𝑧) d𝑧 = −Res𝑧=0
(
1
𝑧2

𝑓
(
𝑧−1

) )

Let 𝑓 be analytic on C \ {𝑧1, . . . , 𝑧𝑛} such that {𝑧𝑘}𝑛𝑘=1 is a finite set of isolated singular points
interior to a simple closed contour 𝐶 , then∫

𝐶

𝑓 (𝑧) d𝑧 = 2𝜋𝑖 Res𝑧=0
(
1
𝑧2

𝑓
(
𝑧−1

) )

Def. Types of Isolated Singular Points of a function 𝑓 , such that 𝑓 (𝑧) =
∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛 +∑∞
𝑛=1

𝑏𝑛
(𝑧−𝑧0)𝑛 on 𝐵′

𝑅2
(𝑧0).

• Removable: ∀𝑛 > 0 : 𝑏𝑛 = 0.
• Essential: For an infinite number of 𝑛 > 0, 𝑏𝑛 ≠ 0.
• Pole of order𝑚: 𝑏𝑚 ≠ 0 and ∀𝑛 > 𝑚 : 𝑏𝑛 = 0.

Thm. If 𝑧0 is an isolated singular point of 𝑓 , then the following are equivalent:
1. 𝑧0 is a pole of order𝑚 > 0 of 𝑓
2. 𝑓 (𝑧) = 𝜙 (𝑧)

(𝑧−𝑧0)𝑚 where 𝜙 (𝑧) is analytic and non-zero at 𝑧0.
Further,

Res𝑧=𝑧0 𝑓 (𝑧) =
𝜙 (𝑚−1) (𝑧0)
(𝑚 − 1)!

Def. 𝑧0 is a zero of order𝑚 if 0 = 𝑓 (𝑧0) = 𝑓 ′(𝑧0) = · · · = 𝑓 (𝑚−1) (𝑧0 and 𝑓 (𝑚) (𝑧0) ≠ 0.

Thm.
If 𝑓 is analytic at 𝑧0 the following are equivalent:
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1. 𝑧0 is a pole of order𝑚 > 0 of 𝑓
2. 𝑓 (𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧) where 𝑔(𝑧) is analytic and non-zero at 𝑧0.

Thm. Let 𝑝, 𝑞 be two functions that are analytic at 𝑧0 w/ 𝑝 (𝑧0) ≠ 0, and 𝑞 have a zero of order𝑚
at 𝑧0. Then 𝑝 (𝑧)

𝑞(𝑧) has a pole of order𝑚 at 𝑧0.

Thm. 𝑝, 𝑞 analytic at 𝑧0. If 𝑝 (𝑧0) ≠ 0, 𝑞(𝑧0) = 0, 𝑞′(𝑧0) ≠ 0, then 𝑧0 is a simple pole of 𝑝 (𝑧)
𝑞(𝑧) and

Res𝑧=𝑧0
𝑝 (𝑧)
𝑞(𝑧) =

𝑝 (𝑧0)
𝑞′(𝑧0) .

Thm. Let 𝑓 be analytic at 𝑧0. If 𝑓 (𝑧0) = 0, then either 𝑓 ≡ 0 in some neighborhood of 𝑧0 or there
exists some deleted neighborhood 𝐵′

𝜖 (𝑧0) such that ∀𝑧 ∈ 𝐵′
𝜖 (𝑧0) : 𝑓 (𝑧) ≠ 0.

Miracle #4 (Analytic Continuation)
Thm. A function analytic in a domain 𝐷 is uniquely determined over 𝐷 by its values on a
(smaller) domain or along a line segment contained in 𝐷 .
Alternative Phrasing: Suppose 𝑓 , 𝑔 analytic in 𝐷 . If 𝑓 = 𝑔 on a smaller domain/line segment
contained in 𝐷 , then 𝑓 ≡ 𝑔 in 𝐷 .

Lemma. Let 𝑓 be analytic in a domain 𝐷 . If 𝑓 = 0 at each point of a domain/line segment con-
tained in 𝐷 , then 𝑓 ≡ 0 in 𝐷 .

Thm. Reflection Principle.
𝑓 analytic in some domain 𝐷 that contains a segment of 𝑥-axis and whose lower half is sym-
metric to upper half wrt the 𝑥 axis. If 𝑓 (𝑥) is real for each 𝑥 on this segment, then

𝑓 (𝑧) = 𝑓 (𝑧).

Thm. If 𝑧0 is a removable singularity of a function 𝑓 , then 𝑓 is bounded and analytic in some
deleted neighborhood, 𝐵′

𝜖 (𝑧0).
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Thm (Riemann’s Theorem of Removable Singularities). If 𝑓 is bounded and analytic in some
𝐵′
𝜖 (𝑧0) and 𝑓 is not analytic at 𝑧0, then 𝑧0 is a removable singularity of 𝑓 .

If 𝑧0 is a pole of 𝑓 , then lim𝑧→𝑧0 𝑓 (𝑧) = ∞.

Thm (Casorati-Weierstrass Theorem). If 𝑧0 is an essential singularity of 𝑓 (an analytic function
in 𝐵′

𝛿0
(𝑧0)), then

∀𝑤0 ∈ C : ∀𝜖 > 0 : ∀0 < 𝛿 < 𝛿0 : ∃𝑧 ∈ 𝐵′
𝛿
(𝑧0) : |𝑓 (𝑧) −𝑤0 | < 𝜖

Intuitive Statement of the Great Picard Theorem: In each neighborhood of an essential singular-
ity, the function takes values of every complex number infinitely many times, w/ one possible
exception.
12 Computing Indefinite Integrals
Def.

𝑃 .𝑉 .

∫ ∞

−∞
𝑓 (𝑥) d𝑥 = lim

𝑅→∞

∫ 𝑅

−𝑅
𝑓 (𝑥) d𝑥

Rmk.
If 𝑓 is CTS on (−∞,∞) and odd, then the PV is 0.
If 𝑓 is CTS on (−∞,∞) and even, then the PV is 𝑃𝑉

∫ ∞
−∞ 𝑓 (𝑥) d𝑥 =

∫ ∞
−∞ 𝑓 (𝑥) d𝑥 = 2

∫ ∞
0 𝑓 (𝑥) d𝑥 .

Form 1: 𝑝 (𝑥)
𝑞(𝑥) , 𝑥 ∈ R rational functions and even. w/ 𝑝, 𝑞 not having common factor.

1. Find all singularities (poles) in the upper half-plane.
2. Compute the residue and apply residue theorem.
3. Use ML estimate to show integral along 𝐶𝑅 goes to 0.
This holds for:

deg𝑄 ≥ deg 𝑃 + 2

Form 2: 𝑃 (𝑥)
𝑄 (𝑥) sin(𝑎𝑥),

𝑃 (𝑥)
𝑄 (𝑥) cos(𝑎𝑥), for 𝑎 > 0.

Trick analyze

𝑓 (𝑧) = 𝑃 (𝑧)
𝑄 (𝑧)𝑒

𝑖𝑎𝑧
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Jordan Inequality.

∀𝑅 > 0 :
∫ 𝜋

0
𝑒−𝑅 sin\ d\ <

𝜋

𝑅

Jordan Lemma.
Let 𝑔(𝑧) < 𝑀𝑅 on 𝐶𝑅 = {𝑅𝑒𝑖\ : \ ∈ [0, 𝜋]}, then����∫

𝐶𝑅

𝑔(𝑧)𝑒𝑖𝑎𝑧 d𝑧
���� < 𝑀𝑅𝜋

𝑎

Form 3:∫ +∞
−∞ 𝑓 (𝑥) d𝑥 , where 𝑓 has a pole in R.
Add a negatively-oriented loop that hops around the pole on R.

Form 4:∫ +∞
−∞ 𝑓 (𝑥) d𝑥 , where 𝑓 involves log(𝑥), 𝑥𝑎 or another function that involves branches.
Pick a branch along the negative imaginary axis, and add a negatively-oriented loop that hops
around the pole at the origin.
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