Thereom List for Math 123 (ODE) w/ Di Fang.

Parth Nobel

Basic Defs

ODE:

$$
\left\{\begin{array}{l}
f: D \subset \mathbb{R}^{n+1} \mapsto \mathbb{R} \\
y^{(n)}=f\left(t, y(t), y^{\prime}(t), \cdots, y^{(n-1)}(t)\right)
\end{array}\right.
$$

Solution of a Diff Eq:
$\phi(t)$ solves an ODE on $I=\left(t_{1}, t_{2}\right)$ if

1. $\phi(t), \phi^{\prime}(t), \cdots, \phi^{(n-1)}(t), \phi^{(n)}(t)$ exists for $t \in I$
2. $\left(\phi(t), \phi^{\prime}(t), \cdots, \phi^{(n-1)}(t)\right) \in D$ for $t \in I$
3. $\phi^{(n)}(t)=f\left(t, \phi(t), \phi^{\prime}(t), \cdots, \phi^{(n-1)}(t)\right)$

Solution Techniques

Integrating Factors

$$
\dot{y}(t)+a(t) y(t)=b(t)
$$

Giving $m(t) \triangleq e^{\int a(t) \mathrm{d} t}$

$$
y(t)=\frac{1}{m(t)}\left[\int m(t) b(t) \mathrm{d} t+C\right]
$$

Bernoulli Eq.

$$
\frac{d y}{d t}+a(t) y=b(t) y^{n} \quad n \geq 0
$$

Substitute $z=y^{1-n} \Longrightarrow \frac{1}{1-n} z^{\prime}=y^{-n} \frac{d y}{d t}$

2nd Order ORDE (linear homo)

$$
\ddot{y}+a(t) \dot{y}+b(t) y=0
$$

If y_{1} and y_{2} are solns, then so is any linear combination.
Theorem: Two solns $y_{1}(t)$ and $y_{2}(t)$ are linearly dependent iff $W(t)=$ $\left|\begin{array}{ll}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|=0$.

Existence

Thm: Picard's Existence Theorem
Suppose f defined on a rectangle R of size $2 a \times 2 b$ is bounded, i.e. $|f(t, y)| \leq$ $M \quad \forall(t, y) \in R . \quad M>0$. and is a cts function satisfying Lipschitz condition

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

for some constant $L>0$.
Then the IVP has a soln on the interval $\left\{t:\left|t-t_{0}\right| \leq \alpha\right\}$ for some constant $\alpha>0, \alpha=\min \left\{a, \frac{b}{M}\right\}$ 。

Picard's Iteration:

$$
\begin{gathered}
y_{0}(s) \triangleq y_{0} \\
y_{n}(t) \triangleq y_{0}+\int_{t_{0}}^{t} f\left(s, y_{n-1}(s)\right) \mathrm{d} s
\end{gathered}
$$

$y(t)=\lim _{n \rightarrow \infty} y_{n}(t)$ exists and solves IVP.

Uniform Convergence (allows interchange of limits and integrals) (Note N before t in the qualifiers)

$$
\forall \epsilon>0, \exists N: \forall n>N, \forall t \in I:\left|f_{n}(t)-f(t)\right|<\epsilon
$$

If $\left|f_{n}(t)\right| \leq M_{n}$ for all $t \in I$ and $\sum_{n=1}^{\infty} M_{n}$ converges, then $\sum_{n=1}^{\infty} f_{n}(t)$ converges uniformly.

Peano's Existence Theorem
Suppose f is CTS on rectangle R. Then there exists a soln of IVP on the interval $\left|t-t_{0}\right|<\alpha$ for some $\alpha>0$

Uniqueness

Thm (Gronwall's Ineq.)
Let $K \geq 0$ constant, f and g are cts non-negative functions defined on $t \in[a, b]$ satisfying

$$
\begin{gathered}
\forall t \in[a, b]: f(t) \leq k+\int_{a}^{t} f(s) g(s) \mathrm{d} s \\
f(t) \leq k \exp \left(\int_{a}^{t} g(s) \mathrm{d} s\right)
\end{gathered}
$$

Uniqueness Theorem
Suppose f is CTS satisfying Lip. condition, i.e.

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

such that $L>0$ constant, on the "box" $R=\left\{(t, y):\left|t-t_{0}\right| \leq a,\left|y-y_{0}\right| \leq b\right\}$ then the soln (defined by local existence thm) is unique.

Sufficient condition for Lip

$$
\left|\frac{\partial f}{\partial y}\right| \leq L
$$

Global Existence

Lemma
Suppose f is CTS in a domain $D,|f| \leq M$ in D. Let ϕ be a soln of $\left\{\begin{array}{l}\frac{\mathrm{d} y}{\mathrm{~d} t}=f(t, y) \\ y\left(t_{0}\right)=y_{0}\end{array} \quad\right.$ that exists a finite interval (a, b). Then $\lim _{t \rightarrow a^{+}} \phi(t)$ and $\lim _{t \rightarrow b^{-}} \phi(t)$ exists.

Suppose f is CTS in a given region D satisfying Lip condition.
f is bounded in D. Let $\left(t_{0}, y_{0}\right) \in D$. Then the unique soln of $\frac{\mathrm{d} y}{\mathrm{~d} t}=f(t, y)$, passing through the point $\left(t_{0}, y_{0}\right)$ can be extended until its graph meets the boundary of D.

Corrollary: If D is (t, y) space, and if f is CTS and Lip on D, then the soln of IVP can be extended uniquely in both directions as long as $|\phi(t)|$ remain finite.

Def: Apriori estimate: $|\phi(t)| \leq M$

Corollary: Consider autonomous system $\left\{\begin{array}{l}y^{\prime}=f(y) \\ y\left(t_{0}\right)=y\end{array} \quad\right.$ with $f: \mathbb{R} \rightarrow \mathbb{R}$ CTS.
If the solution $\phi(t)$ satisfies $|\phi(t)| \leq M$ wherever $\phi(t)$ exists then $I=(-\infty, \infty)$ which gives global existence of solution.

Thm: f CTS in (t, y), bdd, lip in y. in D Lip. const: L.
Let ϕ be the soln of the IVP with $y\left(t_{0}\right)=y_{0}$, and ψ be the soln of IVP with $y\left(t_{0}\right)=\tilde{y}_{0}$
Suppose ϕ, ψ exist on some interval $a<t<b$.
Then $\forall \epsilon>0, \exists \delta>0:\left|y_{0}-\tilde{y}_{0}\right|<\delta \Longrightarrow(\forall t \in(a, b):|\phi(t)-\psi(t)|<\epsilon)$

Thm: Let f and g def on D. CTS in (t, y), bdd $\left\{\begin{array}{l}|f| \leq M \\ |g| \leq M\end{array}\right.$
Lip cts $y . \mathrm{w} /$ same Lip constant L.
Let ϕ be $\left\{\begin{array}{l}y^{\prime}=f(t, y) \\ y\left(t_{0}\right)=y_{0}\end{array} \quad\right.$ and ψ be $\left\{\begin{array}{l}y^{\prime}=g(t, y) \\ y\left(t_{0}\right)=y_{0}\end{array} \quad\right.$ exists a common interval $a<t<b$. Suppose $|f(t, y)-g(t, y)| \leq \epsilon \quad \forall(t, y) \in D$. Then solns ϕ and ψ satisfy the estimate $|\phi(t)-\psi(t)| \leq \epsilon(b-a) \exp \left(L\left|t-t_{0}\right|\right)$.

Linear Systems

Thm: $\frac{\mathrm{d} y}{\mathrm{~d} t}=A(t) y+g(t)$ with $y\left(t_{0}\right)=y_{0}$. If $A(t), g(t)$ are CTS on some interval $[a, b]$ and $t_{0} \in[a, b], y_{0}<\infty$ then the system has a unique soln $\phi(t)$ satisfying $\phi\left(t_{0}\right)=y_{0}$ and existing on $[a, b]$.

Thm $\frac{\mathrm{d} y}{\mathrm{~d} t}=A(t) y$ with $y \in \mathbb{R}^{n}$ (W5B)
If $n \times n$ complex $A(t)$ is CTS on an interval I, then the soln of the system on I form a vector space of dimension n over complex numbers.

Def. Linearliy indep. solns $\phi_{1}, \cdots, \phi_{n}$ are called fundamental set of solns.

$$
\Phi=\left[\begin{array}{lll}
\phi_{1} & \cdots & \phi_{n}
\end{array}\right]
$$

1. Satisfies $\frac{\mathrm{d} \Phi}{\mathrm{d} t}=A(t) \Phi$
2. $\forall \vec{c} \in \mathbb{C}^{n}: \Phi(t) \vec{c}$ solves IVP.
3. $\forall \psi(t) \in S: \exists \vec{c}: \psi(t)=\Phi(t) \vec{c}$
4. $\forall t: \operatorname{det}(\Phi(t)) \neq 0$

Lemma: $\Phi(t)$ satisfies IVP on an interval I, it is a fund. matrix of IVP on I iff $\forall t \in I: \operatorname{det}(\Phi(t)) \neq 0$

Thm: Abel's Formula
If Φ is a fund. matrix of IVP on I, and $t_{0} \in I$, then

$$
\operatorname{det} \Phi(t)=\operatorname{det} \Phi\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \sum_{k=1}^{n} A_{k k}(s) \mathrm{d} s\right)
$$

A soln. matrix $\Phi(t)$ of IVP is a fund. matrix iff $\operatorname{det}(\Phi(t)) \neq 0$ for some $t=t_{0}$.

Cor: $\Phi(t)$ is a fund. matrix of IVP on I and C is a non-singular const matrix, then $\Phi(t) \mathrm{C}$ is a fund. matrix of IVP on I.

Variation of const formula

$$
y(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) y_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) g(s) \mathrm{d} s
$$

Matrix exponential:

$$
e^{M} \triangleq \sum_{n=0}^{\infty} \frac{M^{n}}{n!}
$$

Properties:

1. $e^{0}=I$
2. If $A B=B A$ then $e^{A+B}=e^{A} e^{B}$ and $A e^{B}=e^{B} A$
3. e^{A} is always invertible.
4. If T is nonsingular $n \times n$ mmatrix, then $e^{T A T^{-1}}=T e^{A} T^{-1}$

The Matrix $\Phi(t)=e^{A t}$ is a fund. matrix of $\frac{\mathrm{d} \Phi}{\mathrm{d} t}=A \Phi(t) \mathrm{w} / \Phi(0)=I$

Thm: λ is a complex e-val of real matrix $A \mathrm{w} / \mathrm{e}$-vec v then $\bar{\lambda}$ is also an e-val w/ e-vec $\overrightarrow{\vec{v}}$

See Lecture 7A for the construction of the existence of V for all A with distinct e-vals such that $A V=V D$ where D is not quite diagonal, but still easy to compute a fundamental matrix of.

Def: For a given e-val λ, vector v is called a generalized eigenvector of rank (or index) r if

$$
(A-\lambda I)^{r} v=0 \wedge(A-\lambda I)^{r-1} v \neq 0
$$

Def: Chain of generalized eigenvectors given a generalized eigenvector v of rank r, is given by $v_{r}=v$, and

$$
v_{r-i}=(A-\lambda I)^{i} v=(A-\lambda I) v_{r-i+1} .
$$

Lemma: gen e-vecs in a chain are linearly independent.

Theorem: Given a chain of gen e-vecs of length $r \mathrm{w} / \mathrm{e}$-vals λ we define for $k \in 1,2, \ldots, r$,

$$
y_{k}(t)=e^{\lambda t} \sum_{j=1}^{k} \frac{t^{r-i}}{(r-i)!} v_{i}
$$

which forms r independent solutions of $\frac{d y}{d t}=A y$

Lemma
If $\lambda_{1}, \cdots, \lambda_{k}$ are the distinct e-vals of A, where λ_{j} has multiplicity n_{j} and $n_{1}+\cdots+n_{k}=n$. Then $\forall \rho>\max _{i \leq j \leq k} \operatorname{Re}\left\{\lambda_{j}\right\} \exists K>0:\left|e^{t A}\right| \leq K e^{\rho t}$.

Remark $\forall \rho \geq \max _{i \leq j \leq k} \operatorname{Re}\left\{\lambda_{j}\right\} \exists K>0:\left|e^{t A}\right| \leq K e^{\rho t}$ iff all e-vals with $\max _{j} \operatorname{Re}\left\{\lambda_{j}\right\}$ are simple, in the geometric multiplicity $=$ algebraic multiplicity.

Cor: If all e-vals of A have real parts negative, then every solution $\phi(t)$ of $\frac{d y}{d t}=A y$ approaches 0 as $t \rightarrow \infty$

Suppose that in the non-homo linear system $\frac{d y}{d t}=A y+g(t)$ the function $g(t)$ grow no faster than an exponential function, that is $\exists a \in \mathbb{R}, M>0, T>0: t \geq$ $T \Longrightarrow|g(t)| \leq e^{a t}$. Then every solution ϕ of the system grows no faster than an exponential function, that is,

$$
\exists K>0, T>0, b \in \mathbb{R}: t \geq T \Longrightarrow|\phi(t)| \leq K e^{b t}
$$

Remarks:

1. $\phi^{\prime}(t) \leq \tilde{C} e^{\max \{a, b\} t}$.
2. b can be picked as $\max \{a, \rho\}$, where $\rho>\max _{j}\left\{\operatorname{Re}\left\{\lambda_{j}\right\}\right\}$

Cor:
If $\operatorname{Re}\left\{\lambda_{j}\right\}<0$ for all j and $a<0$, then

$$
\left\{\begin{array}{l}
\lim _{t \rightarrow \infty} y(t)=0 \\
\lim _{t \rightarrow \infty} y^{\prime}(t)=0
\end{array}\right.
$$

See Lecture 10A and 10B for phase portraits.

Linear Periodic Time-Varying ODEs (LPTV ODE)

Floquet Theorem Let $A(t) \in \mathbb{R}^{n \times n}$ CTS periodic matrix with period T. Let $\Phi(t)$ be a fundamental matrix of

$$
\begin{equation*}
\dot{y}=A(t) y \tag{LPTV}
\end{equation*}
$$

Then there exists a periodic nonsingular matrix $P(t)$ with period T and a constant matrix R s.t.

$$
\Phi(t)=P(t) e^{t R}
$$

Remarks:

1. There exists $Q(t)$ real and periodic and S a real constant such that $\Phi(t)=$ $Q(t) e^{t S}$
2. For all $y(t)$ that solves (LPTV), $y(t)=P(t) u(t)$ such that $\frac{d u}{d t}=R u$.

Cor 1.

There exists a non-zero solution of (LPTV) $y(t)$ such that $y(t+T)=\lambda y(t)$ iff λ is an eval of $e^{T R}$.

Def. The evals of $C=e^{T R}$ are called Floquet Multiplier and denoted λ_{i}.

Def. The evals of R are called Floquet Exponents or Characteristic exponent and denoted ρ_{i}.

Note that there is not a one-to-one correspondence of λ to ρ.

Cor 2.
If Floquet Exponents of (LPTV) have negative real parts (or equivalently if multipliers have magnitude strictly less than 1), then all solutions of (LPTV) approach zero as $t \rightarrow \infty$.

Thm
Let $A(t)$ be a matrix with period T and $g(t)$ be periodic with same period T. Consider the perturbed system

$$
\begin{equation*}
\dot{y}=A(t) y+g(t) \tag{PLPTV}
\end{equation*}
$$

A solution $y(t)$ of (PLPTV) is periodic of period T in t iff the soln satisfies $y(T)=y(0)$.

Thm
(PPTV) has periodic solution of period T for any periodic forcing vector g of period T iff $y^{\prime}=A(t) y$ has no periodic solution of period T except trivial solutions.

Lyapunov Stability

Def

1. $\frac{d y}{d t}=f(t, y)$ denote $\phi(t)$ as a solution w/ IC $\phi\left(t_{0}\right)=\phi_{0} . \phi(t)$ is said to be stable if $\forall \epsilon>0, \exists \delta>0:\left\|\phi\left(t_{0}\right)-y_{0}\right\|_{2}<\delta$, the solution $y(t)$ of the solution passing through $\left(t_{0}, y_{0}\right)$ satisfies $\|\phi(t)-y(t)\|<\epsilon$ for $t \geq t_{0}$.
2. Asymptotic stable if it is stable and $\exists \delta_{0}>0$ such that whenever $\|\left(t_{0}\right)-$ $y_{0}\left\|_{2}<\delta_{0}, \lim _{t \rightarrow \infty}\right\| y(t)-\phi(t) \|_{2}=0$.
3. unstable if it is not stable.

Lemma.
The stability of a solution to $\frac{d y}{d t}=A y$ is equivalent to the stability of the zero solution $y(t) \equiv 0$.

Thm.

$$
\frac{d y}{d t}=A y
$$

a) If all e-vals have negative real part, $y \equiv 0$ is asymptotically stable.
b) If all e-vals have non-positive real part, and e-vals with zzero real part are simple, then $y \equiv 0$ is stable.
c) If exists an e-val with positive real part or a non-simple e-vals with zero real part, then $y \equiv 0$ is unstable.

Theorem (periodic)
$y^{\prime}=A(t) y$ with $A(t)$ is periodic with period T
a) If modulus of multiplier all <1, zero soln is asymptotically stable.
b) If modulus of multiplier all <1 or $=1$, zero soln is stable.
c) If exists a multplier with modulus >1, zero soln is unstable.

Theorem
For $y^{\prime}=(A(t)+B(t)) y$
Let all evals of A have real part negative and $B(t) \mathrm{CTS}$ for $0 \leq t<\infty \mathrm{w} /$ $\lim _{t \rightarrow \infty} B(t)=0$.

Then the zero solution is globally asymptotically stable.

Cor.
$\left|e^{A t}\right| \leq K e^{-\rho t}$ for some $K>0, \rho>0$ for all $t \geq 0$. Let $B(t)$ be CTS for $t \geq 0$ and $\exists T>0$ s.t. $t \geq T \Longrightarrow|B(t)| \leq \frac{\sigma}{K}$. Then zero solution is globally asymptotically stable.

Linearization

$$
\begin{equation*}
y^{\prime}=F(y) \tag{ANLE}
\end{equation*}
$$

. $y=y^{*}$ is an equilibrium solution if $F\left(y^{*}\right)=0$. The function $z(t) \triangleq y(t)-y^{*}$ satisfies $\frac{d z}{d t}=F\left(y^{*}\right)+D_{y} F\left(y^{*}\right) z+g(z)=A z+g(z)$ with $A=D_{y} F\left(y^{*}\right)$ is the Jacobian of F with respect to y^{*} and with $g(z)$ CTS, having a fixed point at 0
i.e. $g(0)=0$, and satisfying $\lim _{z \rightarrow 0} \frac{|g(z)|}{|z|}=0$. This is the linearization of F at y^{*}.

Thm
Consider "almost linear" system. $y^{\prime}=A y+f(t, y)$. Suppose all e-vals of A have negative real parts. $f(t, y)$ CTS in (t, y) for $0<t<\infty,|y|<\tilde{K}$ where $\tilde{K}>0$ is a constant, and f is small in the sense that $\lim _{y \rightarrow 0} \frac{|f(t, y)|}{|y|}=0$ uniformly in t on $0 \leq t<\infty$. Then the solution $y \equiv 0$ is asymptotically stable.

For Bootstrapping arguments, see HW9 Q3 for an example proof or Lecture 12B.

Def
If $A=D f\left(y^{*}\right)$ has no e-val w/ zero real part, we call y^{*} a hyperbolic equil. solution.

Notation
$\phi_{t}(y)$ is the solution to a given diff eq with initial condition y evaluated at time t.

Theorem (Hartman-Groan Theorem)
Informally: "In hypperbolic cases, the behaviour of solutions near equilibria of a nonlinear system is qualitatively the same as its linearization."

Formally:
Let y^{*} be an equilibrium solution of $y^{\prime}=f(y), f$ is CTS and CTSly differentiable.
Assume that the linearization matrix at $y^{*}\left(A=D f\left(y^{*}\right)\right.$ has no -e-val with zero real part (it is hyperbolic).

There there exists a neighborhood U of y^{*} such taht "the behaviour of solutions of $y^{\prime}=f(y)$ in U is qualitatively the same as its linearization." Formally, there exists a CTS bijection $H \mathrm{w} /$ continuous inverse (homeomorphism), w/ domain U such that for any $y_{0} \in U, H \circ \phi_{t}\left(y_{0}\right)=e^{t A} H\left(y_{0}\right)$.

Lyapunov Second Method

Consider $\frac{d}{d t} \vec{y}=\vec{f}(\vec{y})$ with $\vec{y} \in \mathbb{R}^{n}$.

If there exists a function $V: \mathbb{R}^{n}->\mathbb{R}$ ctsly diff on some neighborhood Ω containing the origin and 1. V is pos. def. i.e. $V(0)=0$ and $\forall \vec{y} \in \Omega \backslash\{0\}$: $V(\vec{y})>0.1 . V^{*}(\vec{y})=V(\vec{y}) \cdot \vec{f}(\vec{y}) \leq 0$ on Ω.
Then zero solution of $\dot{\vec{y}}=\vec{f}(\vec{y})$ is stable.

Consider $\frac{d}{d t} \vec{y}=\vec{f}(\vec{y})$ with $\vec{y} \in \mathbb{R}^{n}$.
If there exists a function $V: \mathbb{R}^{n}->\mathbb{R}$ ctsly diff on some neighborhood Ω containing the origin and 1. V is pos. def. i.e. $V(0)=0$ and $\forall \vec{y} \in \Omega \backslash\{0\}$: $V(\vec{y})>0$. 1. V^{*} is neg.def i.e. $V(0)=0 \forall \vec{y} \in \Omega \backslash\{0\}: V^{*}(\vec{y})<0$
Then zero solution of $\dot{\vec{y}}=\vec{f}(\vec{y})$ is asymptotically stable.

If $|y| \rightarrow \infty, V(y) \rightarrow \infty$, then the zero solution is globally asymptotically stable.

Notation

$\psi\left(t ; t_{0}, y_{0}\right)$ the flow of an autonomous system, solves $y^{\prime}=f(y)$ with $y\left(t_{0}\right)=y_{0}$ by definition. If $t_{0}=0$ it can be denoted as $\psi_{t}\left(y_{0}\right)=\psi\left(t ; y_{0}\right)=\psi\left(t ; 0, y_{0}\right)$ For an autonomous system it satisfies,

1. $\psi\left(t ; t_{0}, y_{0}\right)=\psi\left(t-t_{0} ; 0, y_{0}\right)$
2. $\psi_{t+s}=\psi_{t} \circ \psi_{s}$ i.e. $\psi_{t+s}\left(y_{0}\right)=\psi_{t}\left(\psi_{s}\left(y_{0}\right)\right)$

Def
P is an invariant set of an auto. system if $\forall y_{0} \in P, \forall t \geq 0: \phi_{t}\left(y_{0}\right) \in P$.

Def
The Positive semi-orbital/Negative semi-orbital of a solution is its behaviour on $t \geq 0 / t \leq 0$

Thm (La Salle's Invariance Principle)
If V is a Lyapunov function on Ω and ctsly diffable $E=\left\{y \in \Omega: V^{*}(y)=0\right\}$ with M the largest invariant set in E.
Consider a solution $\phi_{t}\left(y_{0}\right)$ that is bounded whose positive semi-orbital lies in Ω for $t \geq 0$, then $\operatorname{dis}\left(\psi_{t}\left(y_{0}, M\right) \rightarrow 0\right.$ as $t \rightarrow \infty$

Cor
If $V(y) \rightarrow \infty$ as $|y| \rightarrow \infty$ and $V^{*} \leq 0$ on \mathbb{R}^{n}, then every solution $y^{\prime}=f(y)$ is bounded and approaches M.

In particular if $M=\{0\}$ then the system is globally asymptotically stable.

Thm
$U(x)$ is a potential function, consider $x^{\prime \prime}+U^{\prime}(x)=0$ then

1) equilibrium points are the critical points of $U(x)$
2) strict local maximum of $U(x)$ is a saddle
3) strict local minimum of $U(x)$ is a center
