Thereom List for Math 123 (ODE) w/ Di Fang.

Parth Nobel

Basic Defs

ODE:

f:DCR"™ R
y(n) = f(t7y(t)vy/(t)7 e 7y(n_1)(t>)

Solution of a Diff Eq:
@(t) solves an ODE on I = (ty,t9) if

L o(t),d'(t), -, o™ D(t), ™) (t) exists for t € T
2. (6(t),d'(t), - 0 D(t)eDfortel
3. ¢ (1) = f(t,0(1), ¢/ (1), -, 0"V (1)

Solution Techniques

Integrating Factors

Giving m(t) £ e et

Bernoulli Eq.

d
Y paty=bt)yr  n>0
dt

1

Substitute z = y! ™" = -2/ = y*n%

2nd Order ORDE (linear homo)

Jj+alt)y+bt)y=0

1



If y; and yo are solns, then so is any linear combination.
Theorem: Two solns yi(t) and yz(t) are linearly dependent iff W(t) =

yi(t) y2(t)‘ —0
n) v

Existence

Thm: Picard’s Existence Theorem

Suppose f defined on a rectangle R of size 2a x 2b is bounded, i.e. |f(t,y)| <
M V(t,y) € R. M > 0. and is a cts function satisfying Lipschitz condition

|f(t,y1) — f(t,y2)| < Liy1 — yo

for some constant L > 0.

Then the IVP has a soln on the interval {¢ : |t — to] < a} for some constant
a >0, o = min{a, Z}.

Picard’s Iteration:

lI>

Yo(s) = o

t

yn(t) £ Yo + ] f(s,yn—l(s)) ds

y(t) = limy,— 00 yn (t) exists and solves IVP.

Uniform Convergence (allows interchange of limits and integrals) (Note N before
t in the qualifiers)

Ve>0,3N :Vn> NVt el:|f,(t)— ft)] <e

If | fn(t)] < M, forallt € I and >, M,, converges, then Y >~ | f,(t) converges
uniformly.

Peano’s Existence Theorem

Suppose f is CTS on rectangle R. Then there exists a soln of IVP on the interval
[t — to] < a for some a > 0




Uniqueness

Thm (Gronwall’s Ineq.)

Let K > 0 constant, f and g are cts non-negative functions defined on ¢ € [a, ]
satisfying

Ve [a,b]: f(t) < k—i—/ £()g(s) ds

F(t) < kexp (/atg(s) ds)

Uniqueness Theorem
Suppose f is CTS satisfying Lip. condition, i.e.
|f(t,y1) — f(t.y2)| < Llyr — yo

such that L > 0 constant, on the “box” R = {(¢,y) : |t — to| < a, |y — yo| < b}
then the soln (defined by local existence thm) is unique.

Sufficient condition for Lip

‘W <L

Global Existence

Lemma

Suppose f is CTS in a domain D, |f| < M in D. Let ¢ be a soln of
{?1?; =ty that exists a finite interval (a,b). Then lim; ..+ ¢(¢) and

y(to) = yo
lim; ;- ¢(t) exists.

Suppose f is CTS in a given region D satisfying Lip condition.

f is bounded in D. Let (t9,y0) € D. Then the unique soln of % = f(t,y),
passing through the point (¢g,y0) can be extended until its graph meets the

boundary of D.

Corrollary: If D is (¢,y) space, and if f is CTS and Lip on D, then the soln of
IVP can be extended uniquely in both directions as long as |¢(¢)| remain finite.



Def: Apriori estimate: |¢(t)] < M

y = f(y)
y(to) =y

If the solution ¢(t) satisfies |p(t)| < M wherever ¢(t) exists then I = (—o0, 00)
which gives global existence of solution.

Corollary: Consider autonomous system { with f: R — R CTS.

Thm: f CTS in (¢,y), bdd, lip in y. in D Lip. const: L.

Let ¢ be the soln of the IVP with y(ty) = yo, and @ be the soln of IVP with
y(to) = o

Suppose ¢, 1 exist on some interval a <t < b.

Then Ve > 0,30 > 0: |yo — Jo| <0 = (Vt € (a,b) : |p(t) — ()| <€)

<M
Thm: Let f and g def on D. CTS in (¢,y), bdd 1fl =
lgl < M

Lip cts y. w/ same Lip constant L.

r_
Let ¢ be y'=1fty) and 1 be v =9(ty) exists a common interval
y(to) = yo y(to) = wo
a <t <b. Suppose |f(t,y) —g(t,y)] <€ V(t,y) € D. Then solns ¢ and ¥
satisfy the estimate |¢p(t) — ¥ (t)| < (b — a) exp(L|t — to|).

Linear Systems

Thm: dy = A(t)y + g(t) with y(to) = yo. If A(t), g(t) are CTS on some interval
[a, b] and to € [a,b],yo < oo then the system has a unique soln ¢(t) satisfying
o(to) = yo and existing on [a, ].

Thm §¥ = A(t)y with y € R" (W5B)

If n x n complex A(t) is CTS on an interval I, then the soln of the system on I
form a vector space of dimension n over complex numbers.




Def. Linearliy indep. solns ¢1,--- , ¢, are called fundamental set of solns.
P=[pr - ¢n]

. Satisfies 42 = A(t)®

. V& e C™: d(t)c solves IVP.

L YY(t) €538 (t) = D(t)E

.Vt det(®(t)) #£0

=W N =

Lemma: ®(t) satisfies IVP on an interval I, it is a fund. matrix of IVP on I iff
Vit e I:det(®(t)) #0

Thm: Abel’s Formula
If @ is a fund. matrix of IVP on I, and ¢y € I, then

det ®(t) = det (o) exp (/t z": Agi(s) ds)

to =1

A soln. matrix ®(t) of IVP is a fund. matrix iff det(®(t)) # 0 for some ¢ = t.

Cor: ®(¢) is a fund. matrix of IVP on I and C is a non-singular const matrix,
then ®(¢)C is a fund. matrix of IVP on I.

Variation of const formula

Matrix exponential:

Properties:

1. 2 =1

2. If AB = BA then e*18 = ¢4eB and Aef =B A

3. e? is always invertible. .

4. If T is nonsingular n x n mmatrix, then e747 = TeAT—1

The Matrix ®(t) = e is a fund. matrix of % = AP(t) w/ ®(0) =1



Thm: A is a complex e-val of real matrix A w/ e-vec v then )\ is also an e-val w/
e-vec U

See Lecture TA for the construction of the existence of V for all A with distinct
e-vals such that AV = VD where D is not quite diagonal, but still easy to
compute a fundamental matrix of.

Def: For a given e-val A, vector v is called a generalized eigenvector of rank
(or index) r if
(A=XD)"v=0A(A=X)"tv#0

Def: Chain of generalized eigenvectors given a generalized eigenvector v of
rank r, is given by v, = v, and

Vi = (A= X)'v = (A = X)v,_i41.

Lemma: gen e-vecs in a chain are linearly independent.

Theorem: Given a chain of gen e-vecs of length r w/ e-vals A\ we define for
kel 2,...,r,
N t?“—i
k() =€y I

r—1i)!

which forms r independent solutions of % = Ay

Lemma

If Ai,---, A, are the distinct e-vals of A, where A; has multiplicity n; and
ny + -+ n, =n. Then Vp > max;<;j<i Re{)\;}3K > 0: [e!?]| < Ke’t.

Remark Vp > max;<j<x Re{\;}JIK > 0 : |e!1] < Kert iff all e-vals with
max,; Re{\;} are simple, in the geometric multiplicity = algebraic multiplic-
ity.

Cor: If all e-vals of A have real parts negative, then every solution ¢(t) of

% = Ay approaches 0 as t — o0



Suppose that in the non-homo linear system % = Ay + g(t) the function g(t)

grow no faster than an exponential function, that is 3a € R, M > 0,7 > 0:¢ >
T = |g(t)| < e*. Then every solution ¢ of the system grows no faster than

an exponential function, that is,

IK >0,T>0,beR:t>T = |¢p(t)] < Ke

Remarks:
1. ¢,(t) < éemax{a,b}t.
2. b can be picked as max{a, p}, where p > max;{Re{\;}}

Cor:
If Re{A;} <0 for all j and a < 0, then

lim; 00 y(t) =0
0

hmt%oo y/ (t) =

See Lecture 10A and 10B for phase portraits.

Linear Periodic Time-Varying ODEs (LPTV ODE)

Floquet Theorem Let A(t) € R™*™ CTS periodic matrix with period T. Let ®(t)
be a fundamental matrix of

J= Alt)y (LPTV)

Then there exists a periodic nonsingular matrix P(¢) with period T and a
constant matrix R s.t.

Remarks:

1. There exists Q(¢) real and periodic and S a real constant such that ®(t) =
Q(t) ets
2. For all y(t) that solves (LPTV), y(t) = P(t)u(t) such that 4% = Ru.

Cor 1.

There exists a non-zero solution of (LPTV) y(¢) such that y(t + T) = Ay(t) iff A
is an eval of eT%.



Def. The evals of C = ¢T® are called Floquet Multiplier and denoted ;.

Def. The evals of R are called Floquet Exponents or Characteristic expo-
nent and denoted p;.

Note that there is not a one-to-one correspondence of A to p.

Cor 2.

If Floquet Exponents of (LPTV) have negative real parts (or equivalently if
multipliers have magnitude strictly less than 1), then all solutions of (LPTV)
approach zero as t — oo.

Thm

Let A(t) be a matrix with period T and ¢(t) be periodic with same period T
Consider the perturbed system

y=At)y+g(t) (PLPTV)

A solution y(t) of (PLPTV) is periodic of period T in ¢ iff the soln satisfies
y(T) = y(0).

Thm

(PPTV) has periodic solution of period T for any periodic forcing vector g
of period T iff y' = A(t)y has no periodic solution of period T except trivial
solutions.

Lyapunov Stability
Def

1. % = f(t,y) denote ¢(t) as a solution w/ IC ¢(ty) = ¢o. &(t) is said to

be stable if Ve > 0,35 > 0 : ||¢(to) — yoll2 < 0, the solution y(¢) of the
solution passing through (tg, yo) satisfies ||¢(t) — y(t)|| < € for ¢ > to.

2. Asymptotic stable if it is stable and 39y > 0 such that whenever ||(¢o) —
Yollz < 0o, limyo0[|y(t) — ¢(t)[|2 = 0.

3. unstable if it is not stable.




Lemma.

The stability of a solution to % = Ay is equivalent to the stability of the zero

dt
solution y(t) = 0.

Thm.

W _ 4
dt
a) If all e-vals have negative real part, y = 0 is asymptotically stable.
b) If all e-vals have non-positive real part, and e-vals with zzero real part are
simple, then y = 0 is stable.
c) If exists an e-val with positive real part or a non-simple e-vals with zero
real part, then y = 0 is unstable.

Theorem (periodic)
y' = A(t)y with A(t) is periodic with period T'

a) If modulus of multiplier all < 1, zero soln is asymptotically stable.
b) If modulus of multiplier all < 1 or = 1, zero soln is stable.
c¢) If exists a multplier with modulus > 1, zero soln is unstable.

Theorem
For ¢y = (A(t) + B(t))y

Let all evals of A have real part negative and B(t) CTS for 0 < ¢t < oo w/
limy_yo0 B(t) = 0.

Then the zero solution is globally asymptotically stable.

Cor.

leAt] < Ke Pt for some K > 0,p > 0 for all t+ > 0. Let B(t) be CTS for
t>0and 37 > 0s.t. t >T = |B(t)| < %. Then zero solution is globally
asymptotically stable.

Linearization

y' =F(y) (ANLE)
. y = y* is an equilibrium solution if F(y*) = 0. The function z(t) £ y(t) — y*
satisfies % = F(y*) + Dy F(y*)z + g(2) = Az + g(2) with A = D,F(y*) is the
Jacobian of F' with respect to y* and with g(z) CTS, having a fixed point at 0



lg(z)

B 0. This is the linearization of F' at

i.e. g(0) = 0, and satisfying lim,_,o

*

Y.

Thm

Consider “almost linear” system. y’ = Ay + f(t,y). Suppose all e-vals of A have
negative real parts. f(¢,y) CTS in (t, y) for 0 < t < oo, |y| < K where K > 0 is
a constant, and f is small in the sense that lim,_,o % = 0 uniformly in ¢ on
0 <t < oo. Then the solution y = 0 is asymptotically stable.

For Bootstrapping arguments, see HW9 Q3 for an example proof or Lecture 12B.

Def

If A= Df(y*) has no e-val w/ zero real part, we call y* a hyperbolic equil.
solution.

Notation

¢+(y) is the solution to a given diff eq with initial condition y evaluated at time
t.

Theorem (Hartman-Groan Theorem)

Informally: “In hypperbolic cases, the behaviour of solutions near equilibria of a
nonlinear system is qualitatively the same as its linearization.”

Formally:
Let y* be an equilibrium solution of ¥’ = f(y), f is CTS and CTSly differentiable.

Assume that the linearization matrix at y* (A = D f(y*) has no -e-val with zero
real part (it is hyperbolic).

There there exists a neighborhood U of y* such taht “the behaviour of solutions
of y' = f(y) in U is qualitatively the same as its linearization.” Formally, there
exists a CTS bijection H w/ continuous inverse (homeomorphism), w/ domain
U such that for any yo € U, H o ¢;(yo) = e H(yo).

Lyapunov Second Method

—

Consider 447 = f(y) with § € R™.
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If there exists a function V : R"— > R ctsly diff on some neighborhood 2
containing the origin and 1. V is pos. def. i.e. V(0) = 0 and ¥y € Q \ {0} :

V() >0. 1. V@) = V(@) - f(§) <0 on Q.

. —
=

Then zero solution of ¥ = f() is stable.

Consider 47 = f(7) with 7 € R".

If there exists a function V : R"— > R ctsly diff on some neighborhood 2
containing the origin and 1. V is pos. def. i.e. V(0) = 0 and ¥y € Q \ {0} :
V(g) > 0. 1. V*is neg.defie. V(0) =0Vye Q\{0}:V*(y) <0

—
—

Then zero solution of § = f(i) is asymptotically stable.

If |y| = oo, V(y) — oo, then the zero solution is globally asymptotically stable.

Notation

¥ (t;to, yo) the flow of an autonomous system, solves y' = f(y) with y(to) = yo
by definition. If tx = 0 it can be denoted as ¥:(yo) = ¥ (t;yo) = ¥ (¢;0, yo) For
an autonomous system it satisfies,

L. 4(t;to, yo) = Y (t —t0;0,%0)
2. s = P 0hg ie. Yiys(yo) = Ve(Ws(yo))

Def

P is an invariant set of an auto. system if Yyg € P,Vt > 0 : ¢:(yo) € P.

Def

The Positive semi-orbital/Negative semi-orbital of a solution is its be-
haviour on t > 0/t <0

Thm (La Salle’s Invariance Principle)

If V is a Lyapunov function on  and ctsly diffable E = {y € Q : V*(y) = 0}
with M the largest invariant set in E.

Consider a solution ¢;(yo) that is bounded whose positive semi-orbital lies in €
for t > 0, then dis(¢(yo, M) — 0 as t — oo
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Cor

If V(y) — oo as |y| = oo and V* < 0 on R, then every solution ¢y = f(y) is
bounded and approaches M.

In particular if M = {0} then the system is globally asymptotically stable.

Thm
U(z) is a potential function, consider z” + U’(x) = 0 then

1) equilibrium points are the critical points of U(x)
2) strict local maximum of U(z) is a saddle
3) strict local minimum of U(x) is a center

12
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