
Thereom List for Math 123 (ODE) w/ Di Fang.

Parth Nobel

Basic Defs
ODE: {

f : D ⊂ Rn+1 7→ R
y(n) = f(t, y(t), y′(t), · · · , y(n−1)(t))

Solution of a Diff Eq:

φ(t) solves an ODE on I = (t1, t2) if

1. φ(t), φ′(t), · · · , φ(n−1)(t), φ(n)(t) exists for t ∈ I
2. (φ(t), φ′(t), · · · , φ(n−1)(t)) ∈ D for t ∈ I
3. φ(n)(t) = f(t, φ(t), φ′(t), · · · , φ(n−1)(t))

Solution Techniques
Integrating Factors

ẏ(t) + a(t)y(t) = b(t)

Giving m(t) , e
∫
a(t) dt

y(t) = 1
m(t)

[∫
m(t)b(t) dt+ C

]

Bernoulli Eq.
dy

dt
+ a(t)y = b(t)yn n ≥ 0

Substitute z = y1−n =⇒ 1
1−nz

′ = y−n dydt

2nd Order ORDE (linear homo)

ÿ + a(t)ẏ + b(t)y = 0
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If y1 and y2 are solns, then so is any linear combination.

Theorem: Two solns y1(t) and y2(t) are linearly dependent iff W (t) =∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = 0.

Existence
Thm: Picard’s Existence Theorem

Suppose f defined on a rectangle R of size 2a × 2b is bounded, i.e. |f(t, y)| ≤
M ∀(t, y) ∈ R. M > 0. and is a cts function satisfying Lipschitz condition

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

for some constant L > 0.

Then the IVP has a soln on the interval {t : |t − t0| ≤ α} for some constant
α > 0, α = min{a, bM }.

Picard’s Iteration:

y0(s) , y0

yn(t) , y0 +
∫ t

t0

f(s, yn−1(s)) ds

y(t) = limn→∞ yn(t) exists and solves IVP.

Uniform Convergence (allows interchange of limits and integrals) (Note N before
t in the qualifiers)

∀ε > 0,∃N : ∀n > N, ∀t ∈ I : |fn(t)− f(t)| < ε

If |fn(t)| ≤Mn for all t ∈ I and
∑∞
n=1Mn converges, then

∑∞
n=1 fn(t) converges

uniformly.

Peano’s Existence Theorem

Suppose f is CTS on rectangle R. Then there exists a soln of IVP on the interval
|t− t0| < α for some α > 0
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Uniqueness
Thm (Gronwall’s Ineq.)

Let K ≥ 0 constant, f and g are cts non-negative functions defined on t ∈ [a, b]
satisfying

∀t ∈ [a, b] : f(t) ≤ k +
∫ t

a

f(s)g(s) ds

f(t) ≤ k exp
(∫ t

a

g(s) ds
)

Uniqueness Theorem

Suppose f is CTS satisfying Lip. condition, i.e.

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

such that L > 0 constant, on the “box” R = {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}
then the soln (defined by local existence thm) is unique.

Sufficient condition for Lip ∣∣∣∣∂f∂y
∣∣∣∣ ≤ L.

Global Existence
Lemma

Suppose f is CTS in a domain D, |f | ≤ M in D. Let φ be a soln of{
dy
dt = f(t, y)
y(t0) = y0

that exists a finite interval (a, b). Then limt→a+ φ(t) and

limt→b− φ(t) exists.

Suppose f is CTS in a given region D satisfying Lip condition.

f is bounded in D. Let (t0, y0) ∈ D. Then the unique soln of dy
dt = f(t, y),

passing through the point (t0, y0) can be extended until its graph meets the
boundary of D.

Corrollary: If D is (t, y) space, and if f is CTS and Lip on D, then the soln of
IVP can be extended uniquely in both directions as long as |φ(t)| remain finite.
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Def: Apriori estimate: |φ(t)| ≤M

Corollary: Consider autonomous system
{
y′ = f(y)
y(t0) = y

with f : R→ R CTS.

If the solution φ(t) satisfies |φ(t)| ≤M wherever φ(t) exists then I = (−∞,∞)
which gives global existence of solution.

Thm: f CTS in (t, y), bdd, lip in y. in D Lip. const: L.

Let φ be the soln of the IVP with y(t0) = y0, and ψ be the soln of IVP with
y(t0) = ỹ0

Suppose φ, ψ exist on some interval a < t < b.

Then ∀ε > 0,∃δ > 0 : |y0 − ỹ0| < δ =⇒ (∀t ∈ (a, b) : |φ(t)− ψ(t)| < ε)

Thm: Let f and g def on D. CTS in (t, y), bdd
{
|f | ≤M
|g| ≤M

Lip cts y. w/ same Lip constant L.

Let φ be
{
y′ = f(t, y)
y(t0) = y0

and ψ be
{
y′ = g(t, y)
y(t0) = y0

exists a common interval

a < t < b. Suppose |f(t, y) − g(t, y)| ≤ ε ∀(t, y) ∈ D. Then solns φ and ψ
satisfy the estimate |φ(t)− ψ(t)| ≤ ε(b− a) exp(L|t− t0|).

Linear Systems
Thm: dy

dt = A(t)y + g(t) with y(t0) = y0. If A(t), g(t) are CTS on some interval
[a, b] and t0 ∈ [a, b], y0 < ∞ then the system has a unique soln φ(t) satisfying
φ(t0) = y0 and existing on [a, b].

Thm dy
dt = A(t)y with y ∈ Rn (W5B)

If n× n complex A(t) is CTS on an interval I, then the soln of the system on I
form a vector space of dimension n over complex numbers.
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Def. Linearliy indep. solns φ1, · · · , φn are called fundamental set of solns.

Φ =
[
φ1 · · · φn

]
1. Satisfies dΦ

dt = A(t)Φ

2. ∀~c ∈ Cn : Φ(t)~c solves IVP.

3. ∀ψ(t) ∈ S : ∃~c : ψ(t) = Φ(t)~c

4. ∀t : det(Φ(t)) 6= 0

Lemma: Φ(t) satisfies IVP on an interval I, it is a fund. matrix of IVP on I iff
∀t ∈ I : det(Φ(t)) 6= 0

Thm: Abel’s Formula

If Φ is a fund. matrix of IVP on I, and t0 ∈ I, then

det Φ(t) = det Φ(t0) exp
(∫ t

t0

n∑
k=1

Akk(s) ds
)

A soln. matrix Φ(t) of IVP is a fund. matrix iff det(Φ(t)) 6= 0 for some t = t0.

Cor: Φ(t) is a fund. matrix of IVP on I and C is a non-singular const matrix,
then Φ(t)C is a fund. matrix of IVP on I.

Variation of const formula

y(t) = Φ(t)Φ−1(t0)y0 + Φ(t)
∫ t

t0

Φ−1(s)g(s)ds

Matrix exponential:

eM ,
∞∑
n=0

Mn

n!

Properties:

1. e0 = I
2. If AB = BA then eA+B = eAeB and AeB = eBA
3. eA is always invertible.
4. If T is nonsingular n× n mmatrix, then eTAT−1 = TeAT−1

The Matrix Φ(t) = eAt is a fund. matrix of dΦ
dt = AΦ(t) w/ Φ(0) = I
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Thm: λ is a complex e-val of real matrix A w/ e-vec v then λ̄ is also an e-val w/
e-vec ~̄v

See Lecture 7A for the construction of the existence of V for all A with distinct
e-vals such that AV = V D where D is not quite diagonal, but still easy to
compute a fundamental matrix of.

Def: For a given e-val λ, vector v is called a generalized eigenvector of rank
(or index) r if

(A− λI)rv = 0 ∧ (A− λI)r−1v 6= 0

Def: Chain of generalized eigenvectors given a generalized eigenvector v of
rank r, is given by vr = v, and

vr−i = (A− λI)iv = (A− λI)vr−i+1.

Lemma: gen e-vecs in a chain are linearly independent.

Theorem: Given a chain of gen e-vecs of length r w/ e-vals λ we define for
k ∈ 1, 2, . . . , r,

yk(t) = eλt
k∑
j=1

tr−i

(r − i)!vi

which forms r independent solutions of dydt = Ay

Lemma

If λ1, · · · , λk are the distinct e-vals of A, where λj has multiplicity nj and
n1 + · · ·+ nk = n. Then ∀ρ > maxi≤j≤k Re{λj}∃K > 0 : |etA| ≤ Keρt.

Remark ∀ρ ≥ maxi≤j≤k Re{λj}∃K > 0 : |etA| ≤ Keρt iff all e-vals with
maxj Re{λj} are simple, in the geometric multiplicity = algebraic multiplic-
ity.

Cor: If all e-vals of A have real parts negative, then every solution φ(t) of
dy
dt = Ay approaches 0 as t→∞
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Suppose that in the non-homo linear system dy
dt = Ay + g(t) the function g(t)

grow no faster than an exponential function, that is ∃a ∈ R,M > 0, T > 0 : t ≥
T =⇒ |g(t)| ≤ eat. Then every solution φ of the system grows no faster than
an exponential function, that is,

∃K > 0, T > 0, b ∈ R : t ≥ T =⇒ |φ(t)| ≤ Kebt

Remarks:

1. φ′(t) ≤ C̃emax{a,b}t.

2. b can be picked as max{a, ρ}, where ρ > maxj{Re{λj}}

Cor:

If Re{λj} < 0 for all j and a < 0, then{
limt→∞ y(t) = 0
limt→∞ y′(t) = 0

See Lecture 10A and 10B for phase portraits.

Linear Periodic Time-Varying ODEs (LPTV ODE)
Floquet Theorem Let A(t) ∈ Rn×n CTS periodic matrix with period T. Let Φ(t)
be a fundamental matrix of

ẏ = A(t)y (LPTV)

.

Then there exists a periodic nonsingular matrix P (t) with period T and a
constant matrix R s.t.

Φ(t) = P (t)etR

Remarks:

1. There exists Q(t) real and periodic and S a real constant such that Φ(t) =
Q(t)etS

2. For all y(t) that solves (LPTV), y(t) = P (t)u(t) such that du
dt = Ru.

Cor 1.

There exists a non-zero solution of (LPTV) y(t) such that y(t+ T ) = λy(t) iff λ
is an eval of eTR.
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Def. The evals of C = eTR are called Floquet Multiplier and denoted λi.

Def. The evals of R are called Floquet Exponents or Characteristic expo-
nent and denoted ρi.

Note that there is not a one-to-one correspondence of λ to ρ.

Cor 2.

If Floquet Exponents of (LPTV) have negative real parts (or equivalently if
multipliers have magnitude strictly less than 1), then all solutions of (LPTV)
approach zero as t→∞.

Thm

Let A(t) be a matrix with period T and g(t) be periodic with same period T .
Consider the perturbed system

ẏ = A(t)y + g(t) (PLPTV)

.

A solution y(t) of (PLPTV) is periodic of period T in t iff the soln satisfies
y(T ) = y(0).

Thm

(PPTV) has periodic solution of period T for any periodic forcing vector g
of period T iff y′ = A(t)y has no periodic solution of period T except trivial
solutions.

Lyapunov Stability
Def

1. dy
dt = f(t, y) denote φ(t) as a solution w/ IC φ(t0) = φ0. φ(t) is said to
be stable if ∀ε > 0,∃δ > 0 : ‖φ(t0) − y0‖2 < δ, the solution y(t) of the
solution passing through (t0, y0) satisfies ‖φ(t)− y(t)‖ < ε for t ≥ t0.

2. Asymptotic stable if it is stable and ∃δ0 > 0 such that whenever ‖(t0)−
y0‖2 < δ0, limt→∞‖y(t)− φ(t)‖2 = 0.

3. unstable if it is not stable.
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Lemma.

The stability of a solution to dy
dt = Ay is equivalent to the stability of the zero

solution y(t) ≡ 0.

Thm.

dy

dt
= Ay

a) If all e-vals have negative real part, y ≡ 0 is asymptotically stable.
b) If all e-vals have non-positive real part, and e-vals with zzero real part are

simple, then y ≡ 0 is stable.
c) If exists an e-val with positive real part or a non-simple e-vals with zero

real part, then y ≡ 0 is unstable.

Theorem (periodic)

y′ = A(t)y with A(t) is periodic with period T

a) If modulus of multiplier all < 1, zero soln is asymptotically stable.
b) If modulus of multiplier all < 1 or = 1, zero soln is stable.
c) If exists a multplier with modulus > 1, zero soln is unstable.

Theorem

For y′ = (A(t) +B(t))y

Let all evals of A have real part negative and B(t) CTS for 0 ≤ t < ∞ w/
limt→∞B(t) = 0.

Then the zero solution is globally asymptotically stable.

Cor.

|eAt| ≤ Ke−ρt for some K > 0, ρ > 0 for all t ≥ 0. Let B(t) be CTS for
t ≥ 0 and ∃T > 0 s.t. t ≥ T =⇒ |B(t)| ≤ σ

K . Then zero solution is globally
asymptotically stable.

Linearization
y′ = F (y) (ANLE)

. y = y∗ is an equilibrium solution if F (y∗) = 0. The function z(t) , y(t)− y∗
satisfies dz

dt = F (y∗) +DyF (y∗)z + g(z) = Az + g(z) with A = DyF (y∗) is the
Jacobian of F with respect to y∗ and with g(z) CTS, having a fixed point at 0
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i.e. g(0) = 0, and satisfying limz→0
|g(z)|
|z| = 0. This is the linearization of F at

y∗.

Thm

Consider “almost linear” system. y′ = Ay + f(t, y). Suppose all e-vals of A have
negative real parts. f(t, y) CTS in (t, y) for 0 < t <∞, |y| < K̃ where K̃ > 0 is
a constant, and f is small in the sense that limy→0

|f(t,y)|
|y| = 0 uniformly in t on

0 ≤ t <∞. Then the solution y ≡ 0 is asymptotically stable.

For Bootstrapping arguments, see HW9 Q3 for an example proof or Lecture 12B.

Def

If A = Df(y∗) has no e-val w/ zero real part, we call y∗ a hyperbolic equil.
solution.

Notation

φt(y) is the solution to a given diff eq with initial condition y evaluated at time
t.

Theorem (Hartman-Groan Theorem)

Informally: “In hypperbolic cases, the behaviour of solutions near equilibria of a
nonlinear system is qualitatively the same as its linearization.”

Formally:

Let y∗ be an equilibrium solution of y′ = f(y), f is CTS and CTSly differentiable.

Assume that the linearization matrix at y∗ (A = Df(y∗) has no -e-val with zero
real part (it is hyperbolic).

There there exists a neighborhood U of y∗ such taht “the behaviour of solutions
of y′ = f(y) in U is qualitatively the same as its linearization.” Formally, there
exists a CTS bijection H w/ continuous inverse (homeomorphism), w/ domain
U such that for any y0 ∈ U , H ◦ φt(y0) = etAH(y0).

Lyapunov Second Method
Consider d

dt~y = ~f(~y) with ~y ∈ Rn.
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If there exists a function V : Rn− > R ctsly diff on some neighborhood Ω
containing the origin and 1. V is pos. def. i.e. V (0) = 0 and ∀~y ∈ Ω \ {0} :
V (~y) > 0. 1. V ∗(~y) = V (~y) · ~f(~y) ≤ 0 on Ω.

Then zero solution of ~̇y = ~f(~y) is stable.

Consider d
dt~y = ~f(~y) with ~y ∈ Rn.

If there exists a function V : Rn− > R ctsly diff on some neighborhood Ω
containing the origin and 1. V is pos. def. i.e. V (0) = 0 and ∀~y ∈ Ω \ {0} :
V (~y) > 0. 1. V ∗ is neg.def i.e. V (0) = 0 ∀~y ∈ Ω \ {0} : V ∗(~y) < 0

Then zero solution of ~̇y = ~f(~y) is asymptotically stable.

If |y| → ∞, V (y)→∞, then the zero solution is globally asymptotically stable.

Notation

ψ(t; t0, y0) the flow of an autonomous system, solves y′ = f(y) with y(t0) = y0
by definition. If t0 = 0 it can be denoted as ψt(y0) = ψ(t; y0) = ψ(t; 0, y0) For
an autonomous system it satisfies,

1. ψ(t; t0, y0) = ψ(t− t0; 0, y0)
2. ψt+s = ψt ◦ ψs i.e. ψt+s(y0) = ψt(ψs(y0))

Def

P is an invariant set of an auto. system if ∀y0 ∈ P,∀t ≥ 0 : φt(y0) ∈ P .

Def

The Positive semi-orbital/Negative semi-orbital of a solution is its be-
haviour on t ≥ 0/t ≤ 0

Thm (La Salle’s Invariance Principle)

If V is a Lyapunov function on Ω and ctsly diffable E = {y ∈ Ω : V ∗(y) = 0}
with M the largest invariant set in E.

Consider a solution φt(y0) that is bounded whose positive semi-orbital lies in Ω
for t ≥ 0, then dis(ψt(y0,M)→ 0 as t→∞
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Cor

If V (y) → ∞ as |y| → ∞ and V ∗ ≤ 0 on Rn, then every solution y′ = f(y) is
bounded and approaches M .

In particular if M = {0} then the system is globally asymptotically stable.

Thm

U(x) is a potential function, consider x′′ + U ′(x) = 0 then

1) equilibrium points are the critical points of U(x)
2) strict local maximum of U(x) is a saddle
3) strict local minimum of U(x) is a center
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