
EE120 Notes
Parth Nobel, Naomi Sagan

April 2020

1 Fourier Transformations
Synthesis/Analysis Eqns
Note for intuition: we derived the DTFS and CTFS analysis equations by projecting our time-domain signal
on the kth basis vector (eikω0n or eikω0t)

(a) DTFS (discrete-time, periodic):
x(n) =

∑
k∈〈p〉

X(k)eiω0kn

X(k) = 1
p

∑
n∈〈p〉

X(n)e−iω0kn

Aside: the DFT is similar to the DTFS except the is a 1/p term in the synthesis equation and not the
analysis equation.

(b) DTFT (discrete-time, general):
x(n) = 1

2π

∫
〈2π〉

X(ω)eiωndω

X(ω) =
∑
n∈Z

x(n)e−iωn

Note: in order to use the analysis equation, the signal has to be absolutely summable. If the signal is
not absolutely summable but instead square summable (finite energy), the signal still has a DTFT but
you have to use the synthesis equation and pattern-match. This also applies to the CTFT.

(c) CTFS (continuous-time, periodic):
x(t) =

∑
k∈Z

X(k)eikω0t

X(k) = 1
p

∫
〈p〉
x(t)e−iω0ktdt

(d) CTFT (continuous-time, general):

x(t) = 1
2π

∫
R
X(ω)eiωtdω

X(ω) =
∫
R
x(t)e−iωtdt
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Properties of CTFT/DTFT
Note: Let F {x(t)} (·) denote the CTFT of x(·)

(a) (DTFT, CTFT) Rayleigh-Plancherel-Parseval Identity

〈x | y〉 = 1
2π 〈X | Y 〉

(b) (DTFT, CTFT) Time shift

F {x(t− T )} (ω) = e−iωT F {x(t)} (ω)

(c) (CTFT) Time scale
F {x(at)} (ω) = 1

|a|
F {x(t)}

(ω
a

)
(d) (DTFT, CTFT) Conjugate symmetry (for real signals):

X∗(ω) = X(−ω)

The DTFT/CTFT of a real and even signal will also be real and even. The DTFT/CTFT of a real
and odd signal will be imaginary and odd.

(e) (CTFT) Differentiation in time

F
{

dx(t)
dt

}
(ω) = iωF {x(t)} (ω)

(f) (CTFT) Differentiation in frequency

F {tx(t)} (ω) = i
dF {x(t)}

dω (ω)

(g) (DTFT, CTFT) Convolution property

F {x(t) ∗ y(t)} (ω) = F {x(t)} (ω)F {y(t)} (ω)

(h) (DTFT, CTFT) Modulation property

F {x(t)y(t)} (ω) = 1
2π F {x(t)} (ω) ∗ F {y(t)} (ω)

Note: this also applies to the DTFT, but the convolution is a circular convolution (over a 2π range).
To perform circular convolution, keep the more complicated signal in place, only keep one 2π cycle of
the other, and perform regular convolution. Also, like shown for the CTFT, divide by 2π.

(i) Iterated CTFT
F {F {x(τ)} (t)} (ω) = 2πx(−ω)
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Fourier Transforms of Common Signals
(a) CTFT of a delta

F {δ(t− T )} (ω) = e−iωT

(b) CTFT of a complex exponential

F
{
eiωct

}
(ω) = 2πδ(ω − ωc)

(c) CTFT of a constant
F {1} (ω) = 2πδ(ω)

(d) CTFT of the unit step
F {u(t)} (ω) = 1

iω
+ πδ(ω)

(e) CTFS of ideal LPF (width T , height 1/T )

Xk = 1
πkt

sin(kω0T/2)

(f) DTFT of ideal LPF (width 2B, height A)

A

πn
sin(Bn)

2 Amplitude Modulation
Modulation
Multiply your signal x(t) with a carrier signal c(t) = cos(ω0t). Assume that X(ω) is band-limited such that,
if the bandwidth is 2B, B < |ω0|. By the modulation property of the CTFT, the resulting signal in the
frequency domain will have two copies of X(ω), one centered around ω0 and the other centered around −ω0
and both scaled by 1/2.

Demodulation
To demodulate, multiply your incoming signal y(t) (assume that there was no corruption in transmission)
by cos(ω0t). The transform of the resulting signal will have a copy of X(ω) centered at 0 and scaled by 1/2,
and copies at −2ω0 and 2ω0, both scaled by 1/4. To recover the original signal, we pass this through a LPF
with a gain of 2.

Potential Problems with Demodulation
(a) Phase drift: during demodulation, the signal is instead multiplied by cos(ω0t+ θ).

x̂(t) = cos(θ)x(t)

Depending on the value of θ, the signal will be scaled down, or even zeroed out (at π/2 or 3π/2).
You can deal with phase drift by using an Asynchronous Demodulation circuit consisting of a diode
followed by a resistor and capacitor in parallel (measure the voltage across the resistor).
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(b) Frequency drift: during demodulation, the signal is instead multiplied by cos((ω0 + ∆ω)t).

x̂(t) = cos(∆ωt)x(t)

You can deal with frequency drift by demodulating y(t) in two parts: one where y(t) is multiplied by
cos((ω0 + ∆ω)t) and one where y(t) is multiplied by sin((ω0 + ∆ω)t). Pass both demodulated signals
through a LPF to get:

q1(t) = cos(∆ωt)x(t)

q2(t) = sin(∆ωt)x(t)

You can recover a non-negative signal x(t) as follows:

x(t) =
√
q1(t)2 + q2(t)2 =

√
(cos2(∆ωt) + sin2(∆ωt))x2(t) = |x(t)|

3 Sampling Theory
Sampling a CT Signal
Say you have a CT signal x(t) with band-limited (|ω| ≤ B) transform X(ω) that we sample using sampling
period Ts and sampling frequency ωs = 2π

Ts
.

First, modulate your signal with the impulse train p(t) and convert Dirac deltas to Kronecker deltas:

p(t) =
∞∑

l=−∞
δ(t− lTs)

P (ω) = 2π
Ts

∑
k

δ(ω − kωs)

The resulting signal Xp(ω) will have copies of Xp(ω) centered at integer multiples of ωs and scaled by 1/Ts.
To recover the signal, you can pass it through a LPF with cutoff ωs/2. In the time domain, this is represented
by sinc interpolation:

h(t) = Ts
πt

sin(ωs/2t) = sinc(t/Ts)

Nyquist Rate
To reconstruct a signal with max frequency ω = B we need to sample at a rate ωc such that 2B < ωc.
Otherwise, there will be aliasing, where higher frequencies roll over into lower frequencies. You can pre-
process as signal using anti-alias filtering before the modulation step to avoid aliasing (by cutting off higher
frequencies completely with a LPF).

4 Z-Transform
Z{x(n)}(z) = X̂(z) =

∑
n∈Z

x(n) z−n

Note that the Z-Transform doesn’t converge for lots z. The region for which it converges is known as
the Region of Convergence (RoC).

If a signal is causal, its RoC extends from outermost pole out to infinity.
If a signal is anti-causal, its RoC extends from innermost pole towards the 0.
If a signal is two-sided, the RoC will be between two poles.
If the unit circle is inside the RoC, then the system is BIBO stable.
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Properties of the Z-Transform
Time Delay:

Z{x(n−N)}(z) = z−N X̂(z)

Convolution in time is multiplication in frequency.

Z{x(n) ∗ y(n)}(z) = X̂(z)Ŷ (z)

DTFT is the Z-transform evaluated on the unit circle.

F {x(n)} (ω) = Z{x(n)}(ejω)

Initial value theorem (causal systems)
x(0) = lim

z→∞
X̂(z)

Z-Transform of a LCCDE: For the LCCDE defined by

a0y(n) + a1y(n− 1) + · · ·+ aNy(n−N) = b0x(n) + b1x(n− 1) + · · ·+ bMx(n−M)

the Z-transform Ĥ(z) is represented by

Ĥ(z) = Ŷ (z)
X̂(z)

= b0 + b1z
−1 + · · · bMz−M

a0 + a1z−1 + · · ·+ aNz−N
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